Androgenic induction of penile features in postnatal female mouse external genitalia from birth to adulthood: Is the female sexual phenotype ever irreversibly determined?
Gerald R. Cunha, Mei Cao, Amber Derpinghaus, Laurence S. Baskin
{"title":"Androgenic induction of penile features in postnatal female mouse external genitalia from birth to adulthood: Is the female sexual phenotype ever irreversibly determined?","authors":"Gerald R. Cunha, Mei Cao, Amber Derpinghaus, Laurence S. Baskin","doi":"10.1016/j.diff.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Female mice were treated for 35 days from birth to 60 days postnatal (P0, [birth], P5, P10, P20 and adult [∼P60]) with dihydrotestosterone (DHT). Such treatment elicited profound masculinization the female external genitalia and development of penile features (penile spines, male urogenital mating protuberance (MUMP) cartilage, corpus cavernosum glandis, corporal body, MUMP-corpora cavernosa, a large preputial space, internal preputial space, os penis). Time course studies demonstrated that DHT elicited canalization of the U-shaped clitoral lamina to create a U-shaped preputial space, preputial lining epithelium and penile epithelium adorned with spines. The effect of DHT was likely due to signaling through androgen receptors normally present postnatally in the clitoral lamina and associated mesenchyme. This study highlights a remarkable male/female difference in specification and determination of urogenital organ identity. Urogenital organ identity in male mice is irreversibly specified and determined prenatally (prostate, penis, and seminal vesicle), whereas many aspects of the female urogenital organogenesis are not irreversibly determined at birth and in the case of external genitalia are not irreversibly determined even into adulthood, the exception being positioning of the female urethra, which is determined prenatally.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468123000117","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Female mice were treated for 35 days from birth to 60 days postnatal (P0, [birth], P5, P10, P20 and adult [∼P60]) with dihydrotestosterone (DHT). Such treatment elicited profound masculinization the female external genitalia and development of penile features (penile spines, male urogenital mating protuberance (MUMP) cartilage, corpus cavernosum glandis, corporal body, MUMP-corpora cavernosa, a large preputial space, internal preputial space, os penis). Time course studies demonstrated that DHT elicited canalization of the U-shaped clitoral lamina to create a U-shaped preputial space, preputial lining epithelium and penile epithelium adorned with spines. The effect of DHT was likely due to signaling through androgen receptors normally present postnatally in the clitoral lamina and associated mesenchyme. This study highlights a remarkable male/female difference in specification and determination of urogenital organ identity. Urogenital organ identity in male mice is irreversibly specified and determined prenatally (prostate, penis, and seminal vesicle), whereas many aspects of the female urogenital organogenesis are not irreversibly determined at birth and in the case of external genitalia are not irreversibly determined even into adulthood, the exception being positioning of the female urethra, which is determined prenatally.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.