Maja Pohar Perme , Liesbeth C. de Wreede , Damjan Manevski
{"title":"What is relative survival and what is its role in haematology?","authors":"Maja Pohar Perme , Liesbeth C. de Wreede , Damjan Manevski","doi":"10.1016/j.beha.2023.101474","DOIUrl":null,"url":null,"abstract":"<div><p>In many haematological diseases, the survival probability is the key outcome. However, when the population of patients is rather old and the follow-up long, a significant proportion of deaths cannot be attributed to the studied disease. This lessens the importance of common survival analysis measures like overall survival and shows the need for other outcome measures requiring more complex methodology. When disease-specific information is of interest but the cause of death is not available in the data, relative survival methodology becomes crucial. The idea of relative survival is to merge the observed data set with the mortality data in the general population and thus allow for an indirect estimation of the burden of the disease.</p><p>In this work, an overview of different measures that can be of interest in the field of haematology is given. We introduce the crude mortality that reports the probability of dying due to the disease of interest; the net survival that focuses on excess hazard alone and presents the key measure in comparing the disease burden of patients from populations with different general population mortality; and the relative survival ratio which gives a simple comparison of the patients' and the general population survival. We explain the properties of each measure, and some brief notes are given on estimation. Furthermore, we describe how association with covariates can be studied. All the methods and their estimators are illustrated on a sub-cohort of older patients who received a first allogeneic hematopoietic stem cell transplantation for myelodysplastic syndromes or secondary acute myeloid leukemia, to show how different methods can provide different insights into the data.</p></div>","PeriodicalId":8744,"journal":{"name":"Best Practice & Research Clinical Haematology","volume":"36 2","pages":"Article 101474"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Best Practice & Research Clinical Haematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S152169262300035X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In many haematological diseases, the survival probability is the key outcome. However, when the population of patients is rather old and the follow-up long, a significant proportion of deaths cannot be attributed to the studied disease. This lessens the importance of common survival analysis measures like overall survival and shows the need for other outcome measures requiring more complex methodology. When disease-specific information is of interest but the cause of death is not available in the data, relative survival methodology becomes crucial. The idea of relative survival is to merge the observed data set with the mortality data in the general population and thus allow for an indirect estimation of the burden of the disease.
In this work, an overview of different measures that can be of interest in the field of haematology is given. We introduce the crude mortality that reports the probability of dying due to the disease of interest; the net survival that focuses on excess hazard alone and presents the key measure in comparing the disease burden of patients from populations with different general population mortality; and the relative survival ratio which gives a simple comparison of the patients' and the general population survival. We explain the properties of each measure, and some brief notes are given on estimation. Furthermore, we describe how association with covariates can be studied. All the methods and their estimators are illustrated on a sub-cohort of older patients who received a first allogeneic hematopoietic stem cell transplantation for myelodysplastic syndromes or secondary acute myeloid leukemia, to show how different methods can provide different insights into the data.
期刊介绍:
Best Practice & Research Clinical Haematology publishes review articles integrating the results from the latest original research articles into practical, evidence-based review articles. These articles seek to address the key clinical issues of diagnosis, treatment and patient management. Each issue follows a problem-orientated approach which focuses on the key questions to be addressed, clearly defining what is known and not known, covering the spectrum of clinical and laboratory haematological practice and research. Although most reviews are invited, the Editor welcomes suggestions from potential authors.