Prediction of strand-specific and cell-type-specific G-quadruplexes based on high-resolution CUT&Tag data.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Briefings in Functional Genomics Pub Date : 2024-05-15 DOI:10.1093/bfgp/elad024
Yizhi Cui, Hongzhi Liu, Yutong Ming, Zheng Zhang, Li Liu, Ruijun Liu
{"title":"Prediction of strand-specific and cell-type-specific G-quadruplexes based on high-resolution CUT&Tag data.","authors":"Yizhi Cui, Hongzhi Liu, Yutong Ming, Zheng Zhang, Li Liu, Ruijun Liu","doi":"10.1093/bfgp/elad024","DOIUrl":null,"url":null,"abstract":"<p><p>G-quadruplex (G4), a non-classical deoxyribonucleic acid structure, is widely distributed in the genome and involved in various biological processes. In vivo, high-throughput sequencing has indicated that G4s are significantly enriched at functional regions in a cell-type-specific manner. Therefore, the prediction of G4s based on computational methods is necessary instead of the time-consuming and laborious experimental methods. Recently, G4 CUT&Tag has been developed to generate higher-resolution sequencing data than ChIP-seq, which provides more accurate training samples for model construction. In this paper, we present a new dataset construction method based on G4 CUT&Tag sequencing data and an XGBoost prediction model based on the machine learning boost method. The results show that our model performs well within and across cell types. Furthermore, sequence analysis indicates that the formation of G4 structure is greatly affected by the flanking sequences, and the GC content of the G4 flanking sequences is higher than non-G4. Moreover, we also identified G4 motifs in the high-resolution dataset, among which we found several motifs for known transcription factors (TFs), such as SP2 and BPC. These TFs may directly or indirectly affect the formation of the G4 structure.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad024","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

G-quadruplex (G4), a non-classical deoxyribonucleic acid structure, is widely distributed in the genome and involved in various biological processes. In vivo, high-throughput sequencing has indicated that G4s are significantly enriched at functional regions in a cell-type-specific manner. Therefore, the prediction of G4s based on computational methods is necessary instead of the time-consuming and laborious experimental methods. Recently, G4 CUT&Tag has been developed to generate higher-resolution sequencing data than ChIP-seq, which provides more accurate training samples for model construction. In this paper, we present a new dataset construction method based on G4 CUT&Tag sequencing data and an XGBoost prediction model based on the machine learning boost method. The results show that our model performs well within and across cell types. Furthermore, sequence analysis indicates that the formation of G4 structure is greatly affected by the flanking sequences, and the GC content of the G4 flanking sequences is higher than non-G4. Moreover, we also identified G4 motifs in the high-resolution dataset, among which we found several motifs for known transcription factors (TFs), such as SP2 and BPC. These TFs may directly or indirectly affect the formation of the G4 structure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高分辨率 CUT&Tag 数据预测链特异性和细胞类型特异性 G-四重链。
G-四叠体(G4)是一种非典型脱氧核糖核酸结构,广泛分布于基因组中,参与各种生物过程。体内高通量测序表明,G4s 以细胞类型特异性的方式显著富集于功能区。因此,有必要基于计算方法预测 G4s,而不是费时费力的实验方法。最近开发的 G4 CUT&Tag 能生成比 ChIP-seq 更高分辨率的测序数据,从而为模型构建提供更准确的训练样本。本文提出了一种基于 G4 CUT&Tag 测序数据的新数据集构建方法和基于机器学习提升方法的 XGBoost 预测模型。结果表明,我们的模型在细胞类型内和细胞类型间都表现良好。此外,序列分析表明,G4 结构的形成在很大程度上受侧翼序列的影响,G4 侧翼序列的 GC 含量高于非 G4。此外,我们还在高分辨率数据集中发现了 G4 主题,其中我们发现了几个已知转录因子(TF)的主题,如 SP2 和 BPC。这些转录因子可能会直接或间接影响 G4 结构的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
期刊最新文献
Prioritization of candidate genes for major QTLs governing yield traits employing integrated multi-omics approach in rice (Oryza sativa L.). Environmental community transcriptomics: strategies and struggles. A review: simulation tools for genome-wide interaction studies. Beyond the hype: using AI, big data, wearable devices, and the internet of things for high-throughput livestock phenotyping. Enhancing novel isoform discovery: leveraging nanopore long-read sequencing and machine learning approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1