Omics are Getting Us Closer to Understanding IgA Nephropathy

IF 2.9 4区 医学 Q3 IMMUNOLOGY Archivum Immunologiae et Therapiae Experimentalis Pub Date : 2023-04-15 DOI:10.1007/s00005-023-00677-w
Krzysztof Mucha, Michał Pac, Leszek Pączek
{"title":"Omics are Getting Us Closer to Understanding IgA Nephropathy","authors":"Krzysztof Mucha,&nbsp;Michał Pac,&nbsp;Leszek Pączek","doi":"10.1007/s00005-023-00677-w","DOIUrl":null,"url":null,"abstract":"<div><p>During the last decade, thanks to omics technologies, new light has been shed on the pathogenesis of many diseases. Genomics, epigenomics, transcriptomics, and proteomics have helped to provide a better understanding of the origin and heterogeneity of several diseases. However, the risk factors for most autoimmune diseases remain unknown. The successes and pitfalls of omics have also been observed in nephrology, including immunoglobulin A nephropathy (IgAN), the most common form of glomerulonephritis and a principal cause of end-stage renal disease worldwide. Unfortunately, the immense progress in basic research has not yet been followed by the satisfactory development of a targeted treatment. Although, most omics studies describe changes in the immune system, there is still insufficient data to apply their results in the constantly evolving multi-hit pathogenesis model and thus do to provide a complete picture of the disease. Here, we describe recent findings regarding the pathophysiology of IgAN and link omics studies with immune system dysregulation. This review provides insights into specific IgAN markers, which may lead to the identification of potential targets for personalised treatment in the future.</p></div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00005-023-00677-w.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Immunologiae et Therapiae Experimentalis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00005-023-00677-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

During the last decade, thanks to omics technologies, new light has been shed on the pathogenesis of many diseases. Genomics, epigenomics, transcriptomics, and proteomics have helped to provide a better understanding of the origin and heterogeneity of several diseases. However, the risk factors for most autoimmune diseases remain unknown. The successes and pitfalls of omics have also been observed in nephrology, including immunoglobulin A nephropathy (IgAN), the most common form of glomerulonephritis and a principal cause of end-stage renal disease worldwide. Unfortunately, the immense progress in basic research has not yet been followed by the satisfactory development of a targeted treatment. Although, most omics studies describe changes in the immune system, there is still insufficient data to apply their results in the constantly evolving multi-hit pathogenesis model and thus do to provide a complete picture of the disease. Here, we describe recent findings regarding the pathophysiology of IgAN and link omics studies with immune system dysregulation. This review provides insights into specific IgAN markers, which may lead to the identification of potential targets for personalised treatment in the future.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组学让我们更接近了解IgA肾病
在过去的十年中,多亏了组学技术,许多疾病的发病机制有了新的认识。基因组学、表观基因组学、转录组学和蛋白质组学有助于更好地了解几种疾病的起源和异质性。然而,大多数自身免疫性疾病的危险因素仍然未知。组学的成功和缺陷也在肾脏病学中被观察到,包括免疫球蛋白A肾病(IgAN),这是肾小球肾炎最常见的形式,也是世界范围内终末期肾脏疾病的主要原因。不幸的是,在基础研究取得巨大进展之后,针对性治疗的发展还没有令人满意。尽管大多数组学研究描述了免疫系统的变化,但仍然没有足够的数据将其结果应用于不断发展的多打击发病模型,从而无法提供疾病的完整图景。在这里,我们描述了关于IgAN病理生理学的最新发现,并将组学研究与免疫系统失调联系起来。这篇综述提供了对特定IgAN标记物的见解,这可能会导致未来个性化治疗的潜在目标的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: Archivum Immunologiae et Therapiae Experimentalis (AITE), founded in 1953 by Ludwik Hirszfeld, is a bimonthly, multidisciplinary journal. It publishes reviews and full original papers dealing with immunology, experimental therapy, immunogenetics, transplantation, microbiology, immunochemistry and ethics in science.
期刊最新文献
S-Adenosylmethionine Treatment Diminishes the Proliferation of Castration-Resistant Prostate Cancer Cells by Modulating the Expression of miRNAs. Novel Insight into Inflammatory Pathways in Acute Pulmonary Embolism in Humans. S-Adenosylmethionine Inhibits the Proliferation of Retinoblastoma Cell Y79, Induces Apoptosis and Cell Cycle Arrest of Y79 Cells by Inhibiting the Wnt2/β-Catenin Pathway. Apoptosis Regulation in Dental Pulp Cells and PD-1/PD-L1 Expression Dynamics Under Ozone Exposure - A Pilot Approach. Endothelial Activation and Stress Index Score as a Prognostic Factor of Cytokine Release Syndrome in CAR-T Patients - A Retrospective Analysis of Multiple Myeloma and Large B-Cell Lymphoma Cohorts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1