Autophagy and mitophagy: physiological implications in kidney inflammation and diseases.

IF 3.7 2区 医学 Q1 PHYSIOLOGY American Journal of Physiology-renal Physiology Pub Date : 2023-07-01 Epub Date: 2023-05-11 DOI:10.1152/ajprenal.00012.2023
Divya Bhatia, Mary E Choi
{"title":"Autophagy and mitophagy: physiological implications in kidney inflammation and diseases.","authors":"Divya Bhatia, Mary E Choi","doi":"10.1152/ajprenal.00012.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is a ubiquitous intracellular cytoprotective quality control program that maintains cellular homeostasis by recycling superfluous cytoplasmic components (lipid droplets, protein, or glycogen aggregates) and invading pathogens. Mitophagy is a selective form of autophagy that by recycling damaged mitochondrial material, which can extracellularly act as damage-associated molecular patterns, prevents their release. Autophagy and mitophagy are indispensable for the maintenance of kidney homeostasis and exert crucial functions during both physiological and disease conditions. Impaired autophagy and mitophagy can negatively impact the pathophysiological state and promote its progression. Autophagy helps in maintaining structural integrity of the kidney. Mitophagy-mediated mitochondrial quality control is explicitly critical for regulating cellular homeostasis in the kidney. Both autophagy and mitophagy attenuate inflammatory responses in the kidney. An accumulating body of evidence highlights that persistent kidney injury-induced oxidative stress can contribute to dysregulated autophagic and mitophagic responses and cell death. Autophagy and mitophagy also communicate with programmed cell death pathways (apoptosis and necroptosis) and play important roles in cell survival by preventing nutrient deprivation and regulating oxidative stress. Autophagy and mitophagy are activated in the kidney after acute injury. However, their aberrant hyperactivation can be deleterious and cause tissue damage. The findings on the functions of autophagy and mitophagy in various models of chronic kidney disease are heterogeneous and cell type- and context-specific dependent. In this review, we discuss the roles of autophagy and mitophagy in the kidney in regulating inflammatory responses and during various pathological manifestations.</p>","PeriodicalId":7588,"journal":{"name":"American Journal of Physiology-renal Physiology","volume":"325 1","pages":"F1-F21"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292977/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physiology-renal Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajprenal.00012.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autophagy is a ubiquitous intracellular cytoprotective quality control program that maintains cellular homeostasis by recycling superfluous cytoplasmic components (lipid droplets, protein, or glycogen aggregates) and invading pathogens. Mitophagy is a selective form of autophagy that by recycling damaged mitochondrial material, which can extracellularly act as damage-associated molecular patterns, prevents their release. Autophagy and mitophagy are indispensable for the maintenance of kidney homeostasis and exert crucial functions during both physiological and disease conditions. Impaired autophagy and mitophagy can negatively impact the pathophysiological state and promote its progression. Autophagy helps in maintaining structural integrity of the kidney. Mitophagy-mediated mitochondrial quality control is explicitly critical for regulating cellular homeostasis in the kidney. Both autophagy and mitophagy attenuate inflammatory responses in the kidney. An accumulating body of evidence highlights that persistent kidney injury-induced oxidative stress can contribute to dysregulated autophagic and mitophagic responses and cell death. Autophagy and mitophagy also communicate with programmed cell death pathways (apoptosis and necroptosis) and play important roles in cell survival by preventing nutrient deprivation and regulating oxidative stress. Autophagy and mitophagy are activated in the kidney after acute injury. However, their aberrant hyperactivation can be deleterious and cause tissue damage. The findings on the functions of autophagy and mitophagy in various models of chronic kidney disease are heterogeneous and cell type- and context-specific dependent. In this review, we discuss the roles of autophagy and mitophagy in the kidney in regulating inflammatory responses and during various pathological manifestations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自噬和有丝分裂:在肾脏炎症和疾病中的生理意义。
自噬是一种无处不在的细胞内细胞保护质量控制程序,它通过回收多余的细胞质成分(脂滴、蛋白质或糖原聚集体)和入侵的病原体来维持细胞的平衡。有丝分裂是自噬的一种选择性形式,它通过回收受损线粒体物质(可在细胞外作为损伤相关分子模式)来防止其释放。自噬和有丝分裂是维持肾脏平衡不可或缺的物质,在生理和疾病状态下都发挥着至关重要的作用。自噬和有丝分裂功能受损会对病理生理状态产生负面影响并促进其发展。自噬有助于维持肾脏结构的完整性。有丝分裂介导的线粒体质量控制对于调节肾脏中的细胞平衡至关重要。自噬和线粒体吞噬都能减轻肾脏的炎症反应。越来越多的证据表明,肾脏损伤引起的持续氧化应激会导致自噬和有丝分裂反应失调和细胞死亡。自噬和有丝分裂还与细胞程序性死亡途径(细胞凋亡和坏死)相互沟通,并通过防止营养匮乏和调节氧化应激在细胞存活方面发挥重要作用。急性损伤后,自噬和有丝分裂在肾脏中被激活。然而,它们的异常过度激活可能是有害的,会造成组织损伤。关于自噬和有丝分裂在各种慢性肾脏病模型中的功能,研究结果各不相同,而且取决于细胞类型和具体情况。在本综述中,我们将讨论自噬和有丝分裂在肾脏中调节炎症反应和各种病理表现的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
7.10%
发文量
154
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology - Renal Physiology publishes original manuscripts on timely topics in both basic science and clinical research. Published articles address a broad range of subjects relating to the kidney and urinary tract, and may involve human or animal models, individual cell types, and isolated membrane systems. Also covered are the pathophysiological basis of renal disease processes, regulation of body fluids, and clinical research that provides mechanistic insights. Studies of renal function may be conducted using a wide range of approaches, such as biochemistry, immunology, genetics, mathematical modeling, molecular biology, as well as physiological and clinical methodologies.
期刊最新文献
Sex-specific epigenetic programming in renal fibrosis and inflammation. Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations. Intracellular signaling pathways of muscarinic acetylcholine receptor-mediated detrusor muscle contractions. Role of the SLC22A17/lipocalin-2 receptor in renal endocytosis of proteins/metalloproteins: a focus on iron- and cadmium-binding proteins. Renal tubular SGK1 is required to achieve blood pressure surge and circadian rhythm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1