Xin Yu, Christopher Negron, Lili Huang, Geertruida Veldman
{"title":"TransMHCII: a novel MHC-II binding prediction model built using a protein language model and an image classifier.","authors":"Xin Yu, Christopher Negron, Lili Huang, Geertruida Veldman","doi":"10.1093/abt/tbad011","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of deep learning models such as AlphaFold2 has revolutionized the structure prediction of proteins. Nevertheless, much remains unexplored, especially on how we utilize structure models to predict biological properties. Herein, we present a method using features extracted from protein language models (PLMs) to predict the major histocompatibility complex class II (MHC-II) binding affinity of peptides. Specifically, we evaluated a novel transfer learning approach where the backbone of our model was interchanged with architectures designed for image classification tasks. Features extracted from several PLMs (ESM1b, ProtXLNet or ProtT5-XL-UniRef) were passed into image models (EfficientNet v2b0, EfficientNet v2m or ViT-16). The optimal pairing of the PLM and image classifier resulted in the final model TransMHCII, outperforming NetMHCIIpan 3.2 and NetMHCIIpan 4.0-BA on the receiver operating characteristic area under the curve, balanced accuracy and Jaccard scores. The architecture innovation may facilitate the development of other deep learning models for biological problems.</p>","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibody Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/abt/tbad011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of deep learning models such as AlphaFold2 has revolutionized the structure prediction of proteins. Nevertheless, much remains unexplored, especially on how we utilize structure models to predict biological properties. Herein, we present a method using features extracted from protein language models (PLMs) to predict the major histocompatibility complex class II (MHC-II) binding affinity of peptides. Specifically, we evaluated a novel transfer learning approach where the backbone of our model was interchanged with architectures designed for image classification tasks. Features extracted from several PLMs (ESM1b, ProtXLNet or ProtT5-XL-UniRef) were passed into image models (EfficientNet v2b0, EfficientNet v2m or ViT-16). The optimal pairing of the PLM and image classifier resulted in the final model TransMHCII, outperforming NetMHCIIpan 3.2 and NetMHCIIpan 4.0-BA on the receiver operating characteristic area under the curve, balanced accuracy and Jaccard scores. The architecture innovation may facilitate the development of other deep learning models for biological problems.