B Malique Jones, Gerald C Mingin, Nathan R Tykocki
{"title":"The mast cell stimulator compound 48/80 causes urothelium-dependent increases in murine urinary bladder contractility.","authors":"B Malique Jones, Gerald C Mingin, Nathan R Tykocki","doi":"10.1152/ajprenal.00116.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Mast cells and degranulation of preformed inflammatory mediators contribute to lower urinary tract symptoms. This study investigated pathways by which the mast cell stimulator compound 48/80 alters urinary bladder smooth muscle contractility via mast cell activation. We hypothesized that <i>1</i>) mast cell degranulation causes spontaneous urinary bladder smooth muscle contractions and <i>2</i>) these contractions are caused by urothelium-derived PGE<sub>2</sub>. Urothelium-intact and -denuded urinary bladder strips were collected from mast cell-sufficient (C57Bl/6) and mast cell-deficient (B6.Cg-Kit<sup>w-sh</sup>) mice to determine if compound 48/80 altered urinary bladder smooth muscle (UBSM) contractility. Electrical field stimulation was used to assess the effects of compound 48/80 on nerve-evoked contractions. Antagonists/inhibitors were used to identify prostanoid signaling pathways activated or if direct activation of nerves was involved. Compound 48/80 caused slow-developing contractions, increased phasic activity, and augmented nerve-evoked responses in both mast cell-sufficient and -deficient mice. Nerve blockade had no effect on these responses; however, they were eliminated by removing the urothelium. Blockade of P2 purinoreceptors, cyclooxygenases, or G protein signaling abolished compound 48/80 responses. However, only combined blockade of PGE<sub>2</sub> (EP1), PGF<sub>2α</sub> (FP), and thromboxane A<sub>2</sub> (TP) receptors inhibited compound 48/80-induced responses. Thus, the effects of compound 48/80 are urothelium dependent but independent of mast cells. Furthermore, these effects are mediated by druggable inflammatory pathways that may be used to manage inflammatory nonneurogenic bladder hyperactivity. Finally, these data strongly suggest that great care must be taken when using compound 48/80 to determine mast cell-dependent responses in the urinary bladder.<b>NEW & NOTEWORTHY</b> Urothelial cells are first responders to noxious contents of the urine. Our study demonstrates that the urothelium is not only a barrier but also a modulator of urinary bladder smooth muscle phasic activity and contractility independent of immune cell recruitment in response to an inflammatory insult.</p>","PeriodicalId":7588,"journal":{"name":"American Journal of Physiology-renal Physiology","volume":"325 1","pages":"F50-F60"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physiology-renal Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajprenal.00116.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mast cells and degranulation of preformed inflammatory mediators contribute to lower urinary tract symptoms. This study investigated pathways by which the mast cell stimulator compound 48/80 alters urinary bladder smooth muscle contractility via mast cell activation. We hypothesized that 1) mast cell degranulation causes spontaneous urinary bladder smooth muscle contractions and 2) these contractions are caused by urothelium-derived PGE2. Urothelium-intact and -denuded urinary bladder strips were collected from mast cell-sufficient (C57Bl/6) and mast cell-deficient (B6.Cg-Kitw-sh) mice to determine if compound 48/80 altered urinary bladder smooth muscle (UBSM) contractility. Electrical field stimulation was used to assess the effects of compound 48/80 on nerve-evoked contractions. Antagonists/inhibitors were used to identify prostanoid signaling pathways activated or if direct activation of nerves was involved. Compound 48/80 caused slow-developing contractions, increased phasic activity, and augmented nerve-evoked responses in both mast cell-sufficient and -deficient mice. Nerve blockade had no effect on these responses; however, they were eliminated by removing the urothelium. Blockade of P2 purinoreceptors, cyclooxygenases, or G protein signaling abolished compound 48/80 responses. However, only combined blockade of PGE2 (EP1), PGF2α (FP), and thromboxane A2 (TP) receptors inhibited compound 48/80-induced responses. Thus, the effects of compound 48/80 are urothelium dependent but independent of mast cells. Furthermore, these effects are mediated by druggable inflammatory pathways that may be used to manage inflammatory nonneurogenic bladder hyperactivity. Finally, these data strongly suggest that great care must be taken when using compound 48/80 to determine mast cell-dependent responses in the urinary bladder.NEW & NOTEWORTHY Urothelial cells are first responders to noxious contents of the urine. Our study demonstrates that the urothelium is not only a barrier but also a modulator of urinary bladder smooth muscle phasic activity and contractility independent of immune cell recruitment in response to an inflammatory insult.
期刊介绍:
The American Journal of Physiology - Renal Physiology publishes original manuscripts on timely topics in both basic science and clinical research. Published articles address a broad range of subjects relating to the kidney and urinary tract, and may involve human or animal models, individual cell types, and isolated membrane systems. Also covered are the pathophysiological basis of renal disease processes, regulation of body fluids, and clinical research that provides mechanistic insights. Studies of renal function may be conducted using a wide range of approaches, such as biochemistry, immunology, genetics, mathematical modeling, molecular biology, as well as physiological and clinical methodologies.