A biophysical and statistical modeling paradigm for connecting neural physiology and function.

IF 1.5 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Computational Neuroscience Pub Date : 2023-05-01 DOI:10.1007/s10827-023-00847-x
Nathan G Glasgow, Yu Chen, Alon Korngreen, Robert E Kass, Nathan N Urban
{"title":"A biophysical and statistical modeling paradigm for connecting neural physiology and function.","authors":"Nathan G Glasgow,&nbsp;Yu Chen,&nbsp;Alon Korngreen,&nbsp;Robert E Kass,&nbsp;Nathan N Urban","doi":"10.1007/s10827-023-00847-x","DOIUrl":null,"url":null,"abstract":"<p><p>To understand single neuron computation, it is necessary to know how specific physiological parameters affect neural spiking patterns that emerge in response to specific stimuli. Here we present a computational pipeline combining biophysical and statistical models that provides a link between variation in functional ion channel expression and changes in single neuron stimulus encoding. More specifically, we create a mapping from biophysical model parameters to stimulus encoding statistical model parameters. Biophysical models provide mechanistic insight, whereas statistical models can identify associations between spiking patterns and the stimuli they encode. We used public biophysical models of two morphologically and functionally distinct projection neuron cell types: mitral cells (MCs) of the main olfactory bulb, and layer V cortical pyramidal cells (PCs). We first simulated sequences of action potentials according to certain stimuli while scaling individual ion channel conductances. We then fitted point process generalized linear models (PP-GLMs), and we constructed a mapping between the parameters in the two types of models. This framework lets us detect effects on stimulus encoding of changing an ion channel conductance. The computational pipeline combines models across scales and can be applied as a screen of channels, in any cell type of interest, to identify ways that channel properties influence single neuron computation.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-023-00847-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To understand single neuron computation, it is necessary to know how specific physiological parameters affect neural spiking patterns that emerge in response to specific stimuli. Here we present a computational pipeline combining biophysical and statistical models that provides a link between variation in functional ion channel expression and changes in single neuron stimulus encoding. More specifically, we create a mapping from biophysical model parameters to stimulus encoding statistical model parameters. Biophysical models provide mechanistic insight, whereas statistical models can identify associations between spiking patterns and the stimuli they encode. We used public biophysical models of two morphologically and functionally distinct projection neuron cell types: mitral cells (MCs) of the main olfactory bulb, and layer V cortical pyramidal cells (PCs). We first simulated sequences of action potentials according to certain stimuli while scaling individual ion channel conductances. We then fitted point process generalized linear models (PP-GLMs), and we constructed a mapping between the parameters in the two types of models. This framework lets us detect effects on stimulus encoding of changing an ion channel conductance. The computational pipeline combines models across scales and can be applied as a screen of channels, in any cell type of interest, to identify ways that channel properties influence single neuron computation.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连接神经生理学和功能的生物物理和统计建模范式。
为了理解单个神经元的计算,有必要了解特定的生理参数如何影响特定刺激下出现的神经尖峰模式。在这里,我们提出了一个结合生物物理和统计模型的计算管道,提供了功能性离子通道表达变化和单个神经元刺激编码变化之间的联系。更具体地说,我们创建了从生物物理模型参数到刺激编码统计模型参数的映射。生物物理模型提供了机制上的洞察,而统计模型可以识别出尖峰模式和它们编码的刺激之间的联系。我们使用了两种形态和功能不同的投射神经元细胞类型的公共生物物理模型:主嗅球的二尖瓣细胞(MCs)和V层皮质锥体细胞(PCs)。我们首先根据某些刺激模拟动作电位序列,同时缩放单个离子通道电导。然后,我们拟合了点过程广义线性模型(PP-GLMs),并构建了两类模型中参数之间的映射关系。这个框架使我们能够检测到改变离子通道电导对刺激编码的影响。计算管道结合了跨尺度的模型,可以在任何感兴趣的细胞类型中作为通道屏幕应用,以确定通道属性影响单个神经元计算的方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
32
审稿时长
3 months
期刊介绍: The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.
期刊最新文献
A cortical field theory - dynamics and symmetries. Computational model of layer 2/3 in mouse primary visual cortex explains observed visuomotor mismatch response. Formation and retrieval of cell assemblies in a biologically realistic spiking neural network model of area CA3 in the mouse hippocampus A computational model of auditory chirp-velocity sensitivity and amplitude-modulation tuning in inferior colliculus neurons JCNS goes multiscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1