Inferring Alzheimer's disease pathologic traits from clinical measures in living adults.

Jingjing Yang, Xizhu Liu, Shahram Oveisgharan, Andrea R Zammit, Sukriti Nag, David A Bennett, Aron S Buchman
{"title":"Inferring Alzheimer's disease pathologic traits from clinical measures in living adults.","authors":"Jingjing Yang, Xizhu Liu, Shahram Oveisgharan, Andrea R Zammit, Sukriti Nag, David A Bennett, Aron S Buchman","doi":"10.1101/2023.05.08.23289668","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease neuropathologic changes (AD-NC) are important for identify people with high risk for AD dementia (ADD) and subtyping ADD.</p><p><strong>Objective: </strong>Develop imputation models based on clinical measures to infer AD-NC.</p><p><strong>Methods: </strong>We used penalized generalized linear regression to train imputation models for four AD-NC traits (amyloid-<i>β</i>, tangles, global AD pathology, and pathologic AD) in Rush Memory and Aging Project decedents, using clinical measures at the last visit prior to death as predictors. We validated these models by inferring AD-NC traits with clinical measures at the last visit prior to death for independent Religious Orders Study (ROS) decedents. We inferred baseline AD-NC traits for all ROS participants at study entry, and then tested if inferred AD-NC traits at study entry predicted incident ADD and postmortem pathologic AD.</p><p><strong>Results: </strong>Inferred AD-NC traits at the last visit prior to death were related to postmortem measures with <i>R</i><sup><i>2</i></sup>=(0.188,0.316,0.262) respectively for amyloid-<i>β</i>, tangles, and global AD pathology, and prediction Area Under the receiver operating characteristic Curve (AUC) 0.765 for pathologic AD. Inferred baseline levels of all four AD-NC traits predicted ADD. The strongest prediction was obtained by the inferred baseline probabilities of pathologic AD with AUC=(0.919,0.896) for predicting the development of ADD in 3 and 5 years from baseline. The inferred baseline levels of all four AD-NC traits significantly discriminated pathologic AD profiled eight years later with p-values<1.4 × 10<sup>-10</sup>.</p><p><strong>Conclusion: </strong>Inferred AD-NC traits based on clinical measures may provide effective AD biomarkers that can estimate the burden of AD-NC traits in aging adults.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fa/88/nihpp-2023.05.08.23289668v1.PMC10197717.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.05.08.23289668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Alzheimer's disease neuropathologic changes (AD-NC) are important for identify people with high risk for AD dementia (ADD) and subtyping ADD.

Objective: Develop imputation models based on clinical measures to infer AD-NC.

Methods: We used penalized generalized linear regression to train imputation models for four AD-NC traits (amyloid-β, tangles, global AD pathology, and pathologic AD) in Rush Memory and Aging Project decedents, using clinical measures at the last visit prior to death as predictors. We validated these models by inferring AD-NC traits with clinical measures at the last visit prior to death for independent Religious Orders Study (ROS) decedents. We inferred baseline AD-NC traits for all ROS participants at study entry, and then tested if inferred AD-NC traits at study entry predicted incident ADD and postmortem pathologic AD.

Results: Inferred AD-NC traits at the last visit prior to death were related to postmortem measures with R2=(0.188,0.316,0.262) respectively for amyloid-β, tangles, and global AD pathology, and prediction Area Under the receiver operating characteristic Curve (AUC) 0.765 for pathologic AD. Inferred baseline levels of all four AD-NC traits predicted ADD. The strongest prediction was obtained by the inferred baseline probabilities of pathologic AD with AUC=(0.919,0.896) for predicting the development of ADD in 3 and 5 years from baseline. The inferred baseline levels of all four AD-NC traits significantly discriminated pathologic AD profiled eight years later with p-values<1.4 × 10-10.

Conclusion: Inferred AD-NC traits based on clinical measures may provide effective AD biomarkers that can estimate the burden of AD-NC traits in aging adults.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从成年患者的临床测量推断阿尔茨海默病的病理特征。
背景和目的:使用临床测量方法开发插补模型,推断在世成年人的阿尔茨海默病神经病理学变化(AD-NC),以确定有阿尔茨海默病风险的成年人。方法:我们使用了两项前瞻性队列研究的临床和死后数据——记忆与衰老项目(MAP)和宗教秩序研究(ROS)。我们使用具有弹性净惩罚的广义线性回归模型来训练MAP死者的AD-NC特征(β-淀粉样蛋白、tau缠结、整体AD病理学和NIA-Reagan)的插补模型,使用上次就诊时收集的临床测量作为预测因素。ROS队列被用作独立的验证和测试数据。我们在ROS死者中验证了这些模型,并将这些模型应用于ROS参与者的基线临床数据,以推断基线AD-NC特征。基线临床数据是在最后一次随访前平均8年收集的。我们使用Cox比例风险模型来测试推断的基线AD-NC特征是否预测AD痴呆(ADD)事件。此外,使用两个样本t检验来检验推断的基线AD-NC特征是否预测了死亡时病理性AD高风险的成年人。结果:通过将插补模型应用于ROS最后一次就诊时收集的临床测量,以验证插补模型,我们获得了β-淀粉样蛋白的预测R2为0.188,tau缠结的预测R2是0.316,全局AD病理的预测R2则是0.262。二分型NIA-Reagan的受试者工作特性曲线下的预测面积(AUC)为0.765。在最后一次访问时,所有四个推断的AD-NC特征都强烈区分了死后NIA-Reagan状态(p值<10-28)。所有四个AD-NC性状的推断基线水平预测了ADD,与第5年(AUC 0.842-0.896)相比,第3年预测ADD的准确度更高(AUC范围为0.861-0.919),并且使用推断的NIA-Reagan状态获得了最高的准确度。所有四个AD-NC特征的推断基线水平显著区分死后病理性AD的个体(所有p值均<1.5×10-7)。需要进一步的研究来确定是否可以使用推断的AD-NC性状的重复测量来监测AD延长过程中AD-NC特性的积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
After the Infection: A Survey of Pathogens and Non-communicable Human Disease. The Extra-Islet Pancreas Supports Autoimmunity in Human Type 1 Diabetes. Keyphrase Identification Using Minimal Labeled Data with Hierarchical Contexts and Transfer Learning. Advancing Efficacy Prediction for EHR-based Emulated Trials in Repurposing Heart Failure Therapies. Novel autoantibody targets identified in patients with autoimmune hepatitis (AIH) by PhIP-Seq reveals pathogenic insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1