Proteins turn "Proteans" - The over 40-year delayed paradigm shift in structural biology: From "native proteins in uniquely defined configurations" to "intrinsically disordered proteins".

Q2 Biochemistry, Genetics and Molecular Biology Biomolecular Concepts Pub Date : 2023-01-01 DOI:10.1515/bmc-2022-0030
Eugenio Frixione, Lourdes Ruiz-Zamarripa
{"title":"Proteins turn \"Proteans\" - The over 40-year delayed paradigm shift in structural biology: From <i>\"native proteins in uniquely defined configurations\"</i> to <i>\"intrinsically disordered proteins\"</i>.","authors":"Eugenio Frixione,&nbsp;Lourdes Ruiz-Zamarripa","doi":"10.1515/bmc-2022-0030","DOIUrl":null,"url":null,"abstract":"<p><p>The current millennium brought up a revolutionary paradigm shift in molecular biology: many operative proteins, rather than being quasi-rigid polypeptide chains folded into unique configurations - as believed throughout most of the past century - are now known to be intrinsically disordered, dynamic, pleomorphic, and multifunctional structures with stochastic behaviors. Yet, part of this knowledge, including suggestions about possible mechanisms and plenty of evidence for the same, became available by the 1950s and 1960s to remain then nearly forgotten for over 40 years. Here, we review the main steps toward the classic notions about protein structures, as well as the neglected precedents of present views, discuss possible explanations for such long oblivion, and offer a sketch of the current panorama in this field.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2022-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The current millennium brought up a revolutionary paradigm shift in molecular biology: many operative proteins, rather than being quasi-rigid polypeptide chains folded into unique configurations - as believed throughout most of the past century - are now known to be intrinsically disordered, dynamic, pleomorphic, and multifunctional structures with stochastic behaviors. Yet, part of this knowledge, including suggestions about possible mechanisms and plenty of evidence for the same, became available by the 1950s and 1960s to remain then nearly forgotten for over 40 years. Here, we review the main steps toward the classic notions about protein structures, as well as the neglected precedents of present views, discuss possible explanations for such long oblivion, and offer a sketch of the current panorama in this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质转变为“变形体”-结构生物学中超过40年的延迟范式转变:从“独特定义结构的天然蛋白质”到“内在无序的蛋白质”。
当前的千年带来了分子生物学的革命性范式转变:许多有效的蛋白质,而不是像过去一个世纪所认为的那样,是折叠成独特构型的准刚性多肽链,现在被认为是内在无序的、动态的、多形性的、具有随机行为的多功能结构。然而,这些知识的一部分,包括关于可能机制的建议和大量证据,在20世纪50年代和60年代才得以获得,然后在40多年的时间里几乎被遗忘。在这里,我们回顾了关于蛋白质结构的经典概念的主要步骤,以及目前观点中被忽视的先例,讨论了对这种长期遗忘的可能解释,并提供了该领域当前全景的草图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecular Concepts
Biomolecular Concepts Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍: BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.
期刊最新文献
Anti-arthritic potential of crude sulfated polysaccharide from marine macroalgae Sargassum ilicifolium (Turner) C. Agardh: Regulation of cytokine cascade. Exploring cardiovascular implications in systemic lupus erythematosus: A holistic analysis of complications, diagnostic criteria, and therapeutic modalities, encompassing pharmacological and adjuvant approaches. Toxicity of bisphenol A and p-nitrophenol on tomato plants: Morpho-physiological, ionomic profile, and antioxidants/defense-related gene expression studies. A comprehensive review of the interaction between COVID-19 spike proteins with mammalian small and major heat shock proteins. Biochemical dynamics during postharvest: Highlighting the interplay of stress during storage and maturation of fresh produce.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1