Multichannel EEG brain activity pattern analysis in time–frequency domain with nonnegative matrix factorization support

Tomasz M. Rutkowski , Rafal Zdunek , Andrzej Cichocki
{"title":"Multichannel EEG brain activity pattern analysis in time–frequency domain with nonnegative matrix factorization support","authors":"Tomasz M. Rutkowski ,&nbsp;Rafal Zdunek ,&nbsp;Andrzej Cichocki","doi":"10.1016/j.ics.2006.11.013","DOIUrl":null,"url":null,"abstract":"<div><p>A novel approach combining a time–frequency representation of brain activity in the form of recorded EEG signals together with nonnegative matrix factorization (NMF) post-processing section in brain computer interface<span> (BCI) training paradigm is presented. Such a combination of two emerging signal analysis techniques enables us to find and enhance very small oscillations related to presented visual stimuli. Presented results confirm validity of the chosen approach.</span></p></div>","PeriodicalId":84918,"journal":{"name":"International congress series","volume":"1301 ","pages":"Pages 266-269"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ics.2006.11.013","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International congress series","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0531513106006388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

A novel approach combining a time–frequency representation of brain activity in the form of recorded EEG signals together with nonnegative matrix factorization (NMF) post-processing section in brain computer interface (BCI) training paradigm is presented. Such a combination of two emerging signal analysis techniques enables us to find and enhance very small oscillations related to presented visual stimuli. Presented results confirm validity of the chosen approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持非负矩阵分解的时频域多通道脑电活动模式分析
提出了一种脑机接口(BCI)训练范式中脑活动的时频表征与非负矩阵分解(NMF)后处理相结合的新方法。这种两种新兴信号分析技术的结合使我们能够发现并增强与呈现的视觉刺激相关的非常小的振荡。给出的结果证实了所选方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contents Acknowledgements Author Index Keyword Index Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1