Development of a Transformation System for the Medicinal Fungus Sanghuangporus baumii and Acquisition of High-Value Strain.

IF 2 4区 生物学 Q2 AGRONOMY Mycobiology Pub Date : 2023-01-01 DOI:10.1080/12298093.2023.2220164
Zengcai Liu, Ruipeng Liu, Li Zou
{"title":"Development of a Transformation System for the Medicinal Fungus <i>Sanghuangporus baumii</i> and Acquisition of High-Value Strain.","authors":"Zengcai Liu,&nbsp;Ruipeng Liu,&nbsp;Li Zou","doi":"10.1080/12298093.2023.2220164","DOIUrl":null,"url":null,"abstract":"<p><p>To further explore the molecular mechanism of triterpenoid biosynthesis and acquire high-value strain of <i>Sanghuangporus baumii</i>, the <i>Agrobacterium tumefaciens</i>-mediated transformation (ATMT) system was studied. The key triterpenoid biosynthesis-associated gene isopentenyl diphosphate isomerase (IDI) was transformed into <i>S. baumii</i> by ATMT system. Then, the qRT-PCR technique was used to analyze gene transcript level, and the widely targeted metabolomics was used to investigate individual triterpenoid content. Total triterpenoid content and anti-oxidant activity were determined by spectrophotometer. In this study, we for the first time established an efficient ATMT system and transferred the <i>IDI</i> gene into <i>S. baumii</i>. Relative to the wild-type (WT) strain, the <i>IDI</i>-transformant (IT) strain showed significantly higher transcript levels of <i>IDI</i> and total triterpenoid content. We then investigated individual triterpenoids in <i>S. baumii</i>, which led to the identification of 10 distinct triterpenoids. The contents of individual triterpenoids produced by the IT2 strain were 1.76-10.03 times higher than those produced by the WT strain. The triterpenoid production showed a significant positive correlation with the <i>IDI</i> gene expression. Besides, IT2 strain showed better anti-oxidant activity. The findings provide valuable information about the biosynthetic pathway of triterpenoids and provide a strategy for cultivating high-value <i>S. baumii</i> strains.</p>","PeriodicalId":18825,"journal":{"name":"Mycobiology","volume":"51 3","pages":"169-177"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/95/d1/TMYB_51_2220164.PMC10288903.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/12298093.2023.2220164","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

Abstract

To further explore the molecular mechanism of triterpenoid biosynthesis and acquire high-value strain of Sanghuangporus baumii, the Agrobacterium tumefaciens-mediated transformation (ATMT) system was studied. The key triterpenoid biosynthesis-associated gene isopentenyl diphosphate isomerase (IDI) was transformed into S. baumii by ATMT system. Then, the qRT-PCR technique was used to analyze gene transcript level, and the widely targeted metabolomics was used to investigate individual triterpenoid content. Total triterpenoid content and anti-oxidant activity were determined by spectrophotometer. In this study, we for the first time established an efficient ATMT system and transferred the IDI gene into S. baumii. Relative to the wild-type (WT) strain, the IDI-transformant (IT) strain showed significantly higher transcript levels of IDI and total triterpenoid content. We then investigated individual triterpenoids in S. baumii, which led to the identification of 10 distinct triterpenoids. The contents of individual triterpenoids produced by the IT2 strain were 1.76-10.03 times higher than those produced by the WT strain. The triterpenoid production showed a significant positive correlation with the IDI gene expression. Besides, IT2 strain showed better anti-oxidant activity. The findings provide valuable information about the biosynthetic pathway of triterpenoids and provide a strategy for cultivating high-value S. baumii strains.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
药用真菌桑黄孢子菌转化体系的建立及高价值菌株的获得。
为了进一步探索三萜生物合成的分子机制,获得高价值的桑黄芽孢菌,对农杆菌介导的转化(ATMT)体系进行了研究。利用ATMT系统将三萜生物合成相关关键基因二磷酸异戊烯基异构酶(IDI)转化为鲍氏沙门氏菌。然后,利用qRT-PCR技术分析基因转录水平,利用广泛靶向的代谢组学研究个体三萜含量。用分光光度法测定总三萜含量和抗氧化活性。在本研究中,我们首次建立了一个高效的ATMT系统,并将IDI基因转入鲍氏沙门氏菌。与野生型(WT)菌株相比,IDI转化菌株(IT)的IDI转录物水平和总三萜含量显著提高。然后,我们对鲍氏沙门氏菌中的单个三萜进行了研究,鉴定出10种不同的三萜。IT2菌株产生的单株三萜含量是WT菌株的1.76 ~ 10.03倍。三萜产量与IDI基因表达呈显著正相关。此外,IT2菌株表现出较好的抗氧化活性。这些发现为三萜生物合成途径的研究提供了有价值的信息,并为培养高价值鲍氏沙门氏菌提供了策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mycobiology
Mycobiology AGRONOMYMYCOLOGY-MYCOLOGY
CiteScore
3.90
自引率
5.30%
发文量
41
审稿时长
22 weeks
期刊介绍: Mycobiology is an international journal devoted to the publication of fundamental and applied investigations on all aspects of mycology and their traditional allies. It is published quarterly and is the official publication of the Korean Society of Mycology. Mycobiology publishes reports of basic research on fungi and fungus-like organisms, including yeasts, filamentous fungi, lichen fungi, oomycetes, moulds, and mushroom. Topics also include molecular and cellular biology, biochemistry, metabolism, developmental biology, environmental mycology, evolution, ecology, taxonomy and systematics, genetics/genomics, fungal pathogen and disease control, physiology, and industrial biotechnology using fungi.
期刊最新文献
Characterization of a bZIP Transcription Factor ZipD in Aspergillus flavus. Revealing the Hidden Diversity of Aquatic and Terrestrial Fungi in Korea: 17 Newly Recorded Species. Ergosterol Attenuates Palmitate-Induced Tenocyte Apoptosis Through the Suppression of ER Stress and Myocyte-Derived IL-15/METRNL-Mediated Crosstalk. Nine Unrecorded Species of Phanerochaete (Polyporales, Basidiomycota) in Korea. Fungal Microbiome Within Lichen as a Potential Bioindicator of Climate Change: Insights from Transplant Field Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1