One Rare Warfarin Resistance Case and Possible Mechanism Exploration.

IF 1.8 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pharmacogenomics & Personalized Medicine Pub Date : 2023-01-01 DOI:10.2147/PGPM.S404474
Li Zhao, Zhenguo Zhai, Pengmei Li
{"title":"One Rare Warfarin Resistance Case and Possible Mechanism Exploration.","authors":"Li Zhao,&nbsp;Zhenguo Zhai,&nbsp;Pengmei Li","doi":"10.2147/PGPM.S404474","DOIUrl":null,"url":null,"abstract":"<p><p>One 59-year-old female patient with deep venous thrombosis (DVT) and pulmonary embolism (PE) was treated with 6 mg warfarin once daily as an anticoagulant. Before taking warfarin, her international normalized ratio (INR) was 0.98. Two days after warfarin treatment, her INR did not change from baseline. Due to the high severity of the PE, the patient needed to reach her target range (INR goal = 2.5, range = 2~3) rapidly, so the dose of warfarin was increased from 6 mg daily to 27 mg daily. However, the patient's INR did not improve with the dose escalation, still maintaining an INR of 0.97-0.98. We drew a blood sample half an hour before administering 27 mg warfarin and detected single nucleotide polymorphism for the following genes, which were identified to be relevant with warfarin resistance: CYP2C9 rs1799853, rs1057910, VKORC1 rs9923231, rs61742245, rs7200749, rs55894764, CYP4F2 rs2108622, and GGCX rs2592551. The trough plasma concentration of warfarin was 196.2 ng/mL after 2 days of warfarin administration with 27 mg QD, which was much lower than the therapeutic drug concentration ranges of warfarin (500-3,000 ng/mL). The genotype results demonstrate that the CYP4F2gene has rs2108622 mutation which can explain some aspect of warfarin resistance. Further investigations are necessary to fully characterize other pharmacogenomics or pharmacodynamics determinants of warfarin dose-response in Chinese.</p>","PeriodicalId":56015,"journal":{"name":"Pharmacogenomics & Personalized Medicine","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/08/pgpm-16-609.PMC10290475.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics & Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/PGPM.S404474","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

One 59-year-old female patient with deep venous thrombosis (DVT) and pulmonary embolism (PE) was treated with 6 mg warfarin once daily as an anticoagulant. Before taking warfarin, her international normalized ratio (INR) was 0.98. Two days after warfarin treatment, her INR did not change from baseline. Due to the high severity of the PE, the patient needed to reach her target range (INR goal = 2.5, range = 2~3) rapidly, so the dose of warfarin was increased from 6 mg daily to 27 mg daily. However, the patient's INR did not improve with the dose escalation, still maintaining an INR of 0.97-0.98. We drew a blood sample half an hour before administering 27 mg warfarin and detected single nucleotide polymorphism for the following genes, which were identified to be relevant with warfarin resistance: CYP2C9 rs1799853, rs1057910, VKORC1 rs9923231, rs61742245, rs7200749, rs55894764, CYP4F2 rs2108622, and GGCX rs2592551. The trough plasma concentration of warfarin was 196.2 ng/mL after 2 days of warfarin administration with 27 mg QD, which was much lower than the therapeutic drug concentration ranges of warfarin (500-3,000 ng/mL). The genotype results demonstrate that the CYP4F2gene has rs2108622 mutation which can explain some aspect of warfarin resistance. Further investigations are necessary to fully characterize other pharmacogenomics or pharmacodynamics determinants of warfarin dose-response in Chinese.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一例罕见的华法林耐药病例及其可能的机制探讨。
1例59岁女性深静脉血栓(DVT)合并肺栓塞(PE)患者给予华法林6 mg抗凝治疗,每日1次。服用华法林前,其国际标准化比值(INR)为0.98。华法林治疗2天后,患者的INR与基线相比没有变化。由于PE的严重程度高,患者需要迅速达到目标范围(INR目标= 2.5,范围= 2~3),因此华法林的剂量从每天6mg增加到27mg。然而,患者的INR并没有随着剂量的增加而改善,仍然维持在0.97-0.98之间。在给药27 mg华法林前半小时采血,检测与华法林耐药相关基因CYP2C9 rs1799853、rs1057910、VKORC1 rs9923231、rs61742245、rs7200749、rs55894764、CYP4F2 rs2108622、GGCX rs2592551的单核苷酸多态性。以27 mg QD给药2 d后华法林血药谷浓度为196.2 ng/mL,远低于华法林治疗药物浓度范围(500 ~ 3000 ng/mL)。基因分型结果表明cyp4f2基因存在rs2108622突变,可以解释华法林耐药的某些方面。中国华法林剂量反应的其他药物基因组学或药效学决定因素需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmacogenomics & Personalized Medicine
Pharmacogenomics & Personalized Medicine Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
3.30
自引率
5.30%
发文量
110
审稿时长
16 weeks
期刊介绍: Pharmacogenomics and Personalized Medicine is an international, peer-reviewed, open-access journal characterizing the influence of genotype on pharmacology leading to the development of personalized treatment programs and individualized drug selection for improved safety, efficacy and sustainability. In particular, emphasis will be given to: Genomic and proteomic profiling Genetics and drug metabolism Targeted drug identification and discovery Optimizing drug selection & dosage based on patient''s genetic profile Drug related morbidity & mortality intervention Advanced disease screening and targeted therapeutic intervention Genetic based vaccine development Patient satisfaction and preference Health economic evaluations Practical and organizational issues in the development and implementation of personalized medicine programs.
期刊最新文献
Pharmacogenomic Study of Selected Genes Affecting Amlodipine Blood Pressure Response in Patients with Hypertension. Bioinformatics-Based Identification of Key Prognostic Genes in Neuroblastoma with a Focus on Immune Cell Infiltration and Diagnostic Potential of VGF. Serum IFN-γ Predicts the Therapeutic Effect of Belimumab in Refractory Lupus Nephritis Patients. A Case Report of Hemiplegic Migraine with Mutation in the ATP1A2 Gene. TICRR Overexpression Enhances Disease Aggressiveness and Immune Infiltration of Cutaneous Melanoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1