Contrastive Representation Learning for Gaze Estimation.

Swati Jindal, Roberto Manduchi
{"title":"Contrastive Representation Learning for Gaze Estimation.","authors":"Swati Jindal, Roberto Manduchi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Self-supervised learning (SSL) has become prevalent for learning representations in computer vision. Notably, SSL exploits contrastive learning to encourage visual representations to be invariant under various image transformations. The task of gaze estimation, on the other hand, demands not just invariance to various appearances but also equivariance to the geometric transformations. In this work, we propose a simple contrastive representation learning framework for gaze estimation, named <i>Gaze Contrastive Learning (GazeCLR)</i>. <i>GazeCLR</i> exploits multi-view data to promote equivariance and relies on selected data augmentation techniques that do not alter gaze directions for invariance learning. Our experiments demonstrate the effectiveness of <i>GazeCLR</i> for several settings of the gaze estimation task. Particularly, our results show that <i>GazeCLR</i> improves the performance of cross-domain gaze estimation and yields as high as 17.2% relative improvement. Moreover, the <i>GazeCLR</i> framework is competitive with state-of-the-art representation learning methods for few-shot evaluation. The code and pre-trained models are available at https://github.com/jswati31/gazeclr.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"210 ","pages":"37-49"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270367/pdf/nihms-1862058.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Self-supervised learning (SSL) has become prevalent for learning representations in computer vision. Notably, SSL exploits contrastive learning to encourage visual representations to be invariant under various image transformations. The task of gaze estimation, on the other hand, demands not just invariance to various appearances but also equivariance to the geometric transformations. In this work, we propose a simple contrastive representation learning framework for gaze estimation, named Gaze Contrastive Learning (GazeCLR). GazeCLR exploits multi-view data to promote equivariance and relies on selected data augmentation techniques that do not alter gaze directions for invariance learning. Our experiments demonstrate the effectiveness of GazeCLR for several settings of the gaze estimation task. Particularly, our results show that GazeCLR improves the performance of cross-domain gaze estimation and yields as high as 17.2% relative improvement. Moreover, the GazeCLR framework is competitive with state-of-the-art representation learning methods for few-shot evaluation. The code and pre-trained models are available at https://github.com/jswati31/gazeclr.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于凝视估计的对比表征学习
自我监督学习(SSL)已成为计算机视觉表征学习的主流。值得注意的是,SSL 利用对比学习鼓励视觉表征在各种图像变换下保持不变。另一方面,凝视估计任务不仅要求对各种外观保持不变,还要求对几何变换保持等差数列。在这项工作中,我们为注视估计提出了一个简单的对比表示学习框架,命名为注视对比学习(Gaze Contrastive Learning,GazeCLR)。GazeCLR 利用多视角数据来促进等差性,并依靠不改变注视方向的选定数据增强技术来进行不变量学习。我们的实验证明了 GazeCLR 在几种凝视估计任务设置中的有效性。特别是,我们的实验结果表明,GazeCLR 提高了跨域注视估计的性能,相对提高率高达 17.2%。此外,GazeCLR 框架在少镜头评估方面与最先进的表示学习方法相比具有竞争力。代码和预训练模型可在 https://github.com/jswati31/gazeclr 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources. Multi-Source Conformal Inference Under Distribution Shift. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation. Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters. Adapt and Diffuse: Sample-Adaptive Reconstruction Via Latent Diffusion Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1