Liquid injection field desorption/ionization as a powerful tool to characterize volatile, labile, and reactive metal-organic complexes.

IF 1.1 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL European Journal of Mass Spectrometry Pub Date : 2023-02-01 DOI:10.1177/14690667221146687
Nils Boysen, Anjana Devi
{"title":"Liquid injection field desorption/ionization as a powerful tool to characterize volatile, labile, and reactive metal-organic complexes.","authors":"Nils Boysen,&nbsp;Anjana Devi","doi":"10.1177/14690667221146687","DOIUrl":null,"url":null,"abstract":"<p><p>Electron ionization mass spectrometry (EI-MS) is often used to characterize volatile and thermally stable organometallic complexes relevant for chemical vapor deposition (CVD) processes. However, this method has limitations for thermally unstable and labile organometallic complexes. In this context, EI-MS is not the preferred method of choice for characterizing such compounds. With three different representative organometallic complexes based on the transition metals yttrium, iridium, and silver, relevant as precursors for CVD of different materials, the significance of liquid injection field desorption/ionization mass spectrometry (LIFDI-MS) as an important precursor characterization tool is exemplified. The precursors are not only reactive toward ambient air, but also thermally labile especially in the case of iridium and silver complexes. As a promising alternative, LIFDI-MS is used to overcome the limitations of EI-MS. For the first time, these complexes were successfully analyzed using LIFDI-MS. The comparison between EI-MS and LIFDI-MS highlights that LIFDI-MS is superior for the mass spectrometric analysis of sensitive and labile complexes. In terms of precursor characterization, LIFDI-MS can be fully exploited to gain valuable insights into the decomposition mechanisms and identifying the nuclearity of organometallic precursors used for CVD applications.</p>","PeriodicalId":12007,"journal":{"name":"European Journal of Mass Spectrometry","volume":"29 1","pages":"12-20"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667221146687","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Electron ionization mass spectrometry (EI-MS) is often used to characterize volatile and thermally stable organometallic complexes relevant for chemical vapor deposition (CVD) processes. However, this method has limitations for thermally unstable and labile organometallic complexes. In this context, EI-MS is not the preferred method of choice for characterizing such compounds. With three different representative organometallic complexes based on the transition metals yttrium, iridium, and silver, relevant as precursors for CVD of different materials, the significance of liquid injection field desorption/ionization mass spectrometry (LIFDI-MS) as an important precursor characterization tool is exemplified. The precursors are not only reactive toward ambient air, but also thermally labile especially in the case of iridium and silver complexes. As a promising alternative, LIFDI-MS is used to overcome the limitations of EI-MS. For the first time, these complexes were successfully analyzed using LIFDI-MS. The comparison between EI-MS and LIFDI-MS highlights that LIFDI-MS is superior for the mass spectrometric analysis of sensitive and labile complexes. In terms of precursor characterization, LIFDI-MS can be fully exploited to gain valuable insights into the decomposition mechanisms and identifying the nuclearity of organometallic precursors used for CVD applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液体注入场解吸/电离是表征挥发性、不稳定性和活性金属有机配合物的有力工具。
电子电离质谱(e - ms)通常用于表征与化学气相沉积(CVD)工艺相关的挥发性和热稳定性有机金属配合物。然而,这种方法对热不稳定和不稳定的有机金属配合物有局限性。在这种情况下,EI-MS不是表征这类化合物的首选方法。以过渡金属钇、铱和银为基础的三种具有代表性的有机金属配合物为例,说明了液体注入场解吸/电离质谱(LIFDI-MS)作为一种重要的前驱体表征工具的意义。前驱体不仅对周围空气具有反应性,而且对铱和银的配合物也具有热不稳定性。LIFDI-MS是一种很有前途的替代方法,可以克服EI-MS的局限性。首次使用LIFDI-MS成功分析了这些配合物。EI-MS和LIFDI-MS的比较表明,LIFDI-MS在敏感和不稳定配合物的质谱分析中具有优势。在前驱体表征方面,LIFDI-MS可以充分利用,以获得有价值的见解,分解机制和鉴定用于CVD应用的有机金属前驱体的核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
16
审稿时长
>12 weeks
期刊介绍: JMS - European Journal of Mass Spectrometry, is a peer-reviewed journal, devoted to the publication of innovative research in mass spectrometry. Articles in the journal come from proteomics, metabolomics, petroleomics and other areas developing under the umbrella of the “omic revolution”.
期刊最新文献
Basics of utilizing NH4+ ions for accurate phthalate ester quantification via selected ion flow tube mass spectrometry in food. Clustering of biphenyl oxamide ions by chiral recognition. Analysis of dimer and trimer complexes of the non-amyloidogenic rat islet amyloid polypeptide 21-37 by electrospray ionization-tandem mass spectrometry. Exploring the versatility of mass spectrometry: Applications across diverse scientific disciplines. Bioanalytical method development and validation of docetaxel and carvacrol in mice plasma using LC-QqQ-MS/MS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1