{"title":"Multilingual deep learning framework for fake news detection using capsule neural network.","authors":"Rami Mohawesh, Sumbal Maqsood, Qutaibah Althebyan","doi":"10.1007/s10844-023-00788-y","DOIUrl":null,"url":null,"abstract":"<p><p>Fake news detection is an essential task; however, the complexity of several languages makes fake news detection challenging. It requires drawing many conclusions about the numerous people involved to comprehend the logic behind some fake stories. Existing works cannot collect more semantic and contextual characteristics from documents in a particular multilingual text corpus. To bridge these challenges and deal with multilingual fake news detection, we present a semantic approach to the identification of fake news based on relational variables like sentiment, entities, or facts that may be directly derived from the text. Our model outperformed the state-of-the-art methods by approximately 3.97% for English to English, 1.41% for English to Hindi, 5.47% for English to Indonesian, 2.18% for English to Swahili, and 2.88% for English to Vietnamese language reviews on TALLIP fake news dataset. To the best of our knowledge, our paper is the first study that uses a capsule neural network for multilingual fake news detection.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":" ","pages":"1-17"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-023-00788-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fake news detection is an essential task; however, the complexity of several languages makes fake news detection challenging. It requires drawing many conclusions about the numerous people involved to comprehend the logic behind some fake stories. Existing works cannot collect more semantic and contextual characteristics from documents in a particular multilingual text corpus. To bridge these challenges and deal with multilingual fake news detection, we present a semantic approach to the identification of fake news based on relational variables like sentiment, entities, or facts that may be directly derived from the text. Our model outperformed the state-of-the-art methods by approximately 3.97% for English to English, 1.41% for English to Hindi, 5.47% for English to Indonesian, 2.18% for English to Swahili, and 2.88% for English to Vietnamese language reviews on TALLIP fake news dataset. To the best of our knowledge, our paper is the first study that uses a capsule neural network for multilingual fake news detection.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.