{"title":"High amylose to amylopectin ratios in nitrogen-free diets decrease the ileal endogenous amino acid losses of broiler chickens","authors":"Huajin Zhou , Tahir Mahmood , Wei Wu , Yanhong Chen , Yao Yu , Jianmin Yuan","doi":"10.1016/j.aninu.2023.03.011","DOIUrl":null,"url":null,"abstract":"<div><p>This study explored the variation of ileal endogenous amino acid (IEAA) losses and its influencing factors in chickens offered nitrogen-free diets (NFD) containing different ratios of amylose to amylopectin (AM/AP). A total of 252 broiler chickens at 28 d old were randomly allocated into 7 treatment groups for a 3-d trial. The dietary treatments included a basal diet (control), a NFD containing corn starch (CS), and 5 NFD with AM/AP ratios of 0.20, 0.40, 0.60, 0.80, and 1.00, respectively. As the AM/AP ratio increased, the IEAA losses of all AAs, starch digestibility and maltase activity linearly decreased (<em>P</em> < 0.05), but the DM digestibility linearly and quadratically decreased (<em>P</em> < 0.05). Compared with the control, the NFD increased the number of goblet cells and its regulatory genes mucin-2 and krüppel-like factor 4 (<em>KLF-4</em>) while decreasing serum glucagon and thyroxine concentrations, ileal villus height, and crypt depth (<em>P</em> < 0.05). Additionally, NFD with lower AM/AP ratios (0.20 and 0.40) decreased the ileal microbiota species richness (<em>P</em> < 0.05). In all NFD groups, the number of Proteobacteria increased whereas the abundance of Firmicutes dropped (<em>P</em> < 0.05). However, the broilers in the AM/AP 0.60 group were closer to the digestive physiological state of chickens fed the control diet, with no significant change in maltase activity and mucin-2 expression (<em>P</em> < 0.05). In conclusion, increasing AM/AP ratio in a NFD decreased the IEAA losses and the apparent ileal digestibility of starch but inevitably resulted in malnutrition and disruption of gut microbiota homeostasis. This study recommends AM/AP in NFD at 0.60 to measure IEAA of broiler chickens.</p></div>","PeriodicalId":62604,"journal":{"name":"Animal Nutrition","volume":"14 ","pages":"Pages 111-120"},"PeriodicalIF":6.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/00/ed/main.PMC10300069.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405654523000550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the variation of ileal endogenous amino acid (IEAA) losses and its influencing factors in chickens offered nitrogen-free diets (NFD) containing different ratios of amylose to amylopectin (AM/AP). A total of 252 broiler chickens at 28 d old were randomly allocated into 7 treatment groups for a 3-d trial. The dietary treatments included a basal diet (control), a NFD containing corn starch (CS), and 5 NFD with AM/AP ratios of 0.20, 0.40, 0.60, 0.80, and 1.00, respectively. As the AM/AP ratio increased, the IEAA losses of all AAs, starch digestibility and maltase activity linearly decreased (P < 0.05), but the DM digestibility linearly and quadratically decreased (P < 0.05). Compared with the control, the NFD increased the number of goblet cells and its regulatory genes mucin-2 and krüppel-like factor 4 (KLF-4) while decreasing serum glucagon and thyroxine concentrations, ileal villus height, and crypt depth (P < 0.05). Additionally, NFD with lower AM/AP ratios (0.20 and 0.40) decreased the ileal microbiota species richness (P < 0.05). In all NFD groups, the number of Proteobacteria increased whereas the abundance of Firmicutes dropped (P < 0.05). However, the broilers in the AM/AP 0.60 group were closer to the digestive physiological state of chickens fed the control diet, with no significant change in maltase activity and mucin-2 expression (P < 0.05). In conclusion, increasing AM/AP ratio in a NFD decreased the IEAA losses and the apparent ileal digestibility of starch but inevitably resulted in malnutrition and disruption of gut microbiota homeostasis. This study recommends AM/AP in NFD at 0.60 to measure IEAA of broiler chickens.
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to primarily to the nutrition of farm animals and aquatic species. More applied aspects of animal nutrition, such as the evaluation of novel ingredients, feed additives and feed safety will also be considered but it is expected that such studies will have a strong nutritional focus. Animal Nutrition is indexed in SCIE, PubMed Central, Scopus, DOAJ, etc.