Predicting transporter mediated drug–drug interactions via static and dynamic physiologically based pharmacokinetic modeling: A comprehensive insight on where we are now and the way forward
{"title":"Predicting transporter mediated drug–drug interactions via static and dynamic physiologically based pharmacokinetic modeling: A comprehensive insight on where we are now and the way forward","authors":"Gautam Vijaywargi, Sivacharan Kollipara, Tausif Ahmed, Siddharth Chachad","doi":"10.1002/bdd.2339","DOIUrl":null,"url":null,"abstract":"<p>The greater utilization and acceptance of physiologically-based pharmacokinetic (PBPK) modeling to evaluate the potential metabolic drug–drug interactions is evident by the plethora of literature, guidance's, and regulatory dossiers available in the literature. In contrast, it is not widely used to predict transporter-mediated DDI (tDDI). This is attributed to the unavailability of accurate transporter tissue expression levels, the absence of accurate in vitro to in vivo extrapolations (IVIVE), enzyme-transporter interplay, and a lack of specific probe substrates. Additionally, poor understanding of the inhibition/induction mechanisms coupled with the inability to determine unbound concentrations at the interaction site made tDDI assessment challenging. Despite these challenges, continuous improvements in IVIVE approaches enabled accurate tDDI predictions. Furthermore, the necessity of extrapolating tDDI's to special (pediatrics, pregnant, geriatrics) and diseased (renal, hepatic impaired) populations is gaining impetus and is encouraged by regulatory authorities. This review aims to visit the current state-of-the-art and summarizes contemporary knowledge on tDDI predictions. The current understanding and ability of static and dynamic PBPK models to predict tDDI are portrayed in detail. Peer-reviewed transporter abundance data in special and diseased populations from recent publications were compiled, enabling direct input into modeling tools for accurate tDDI predictions. A compilation of regulatory guidance's for tDDI's assessment and success stories from regulatory submissions are presented. Future perspectives and challenges of predicting tDDI in terms of in vitro system considerations, endogenous biomarkers, the use of empirical scaling factors, enzyme-transporter interplay, and acceptance criteria for model validation to meet the regulatory expectations were discussed.</p>","PeriodicalId":8865,"journal":{"name":"Biopharmaceutics & Drug Disposition","volume":"44 3","pages":"195-220"},"PeriodicalIF":1.7000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopharmaceutics & Drug Disposition","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2339","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2
Abstract
The greater utilization and acceptance of physiologically-based pharmacokinetic (PBPK) modeling to evaluate the potential metabolic drug–drug interactions is evident by the plethora of literature, guidance's, and regulatory dossiers available in the literature. In contrast, it is not widely used to predict transporter-mediated DDI (tDDI). This is attributed to the unavailability of accurate transporter tissue expression levels, the absence of accurate in vitro to in vivo extrapolations (IVIVE), enzyme-transporter interplay, and a lack of specific probe substrates. Additionally, poor understanding of the inhibition/induction mechanisms coupled with the inability to determine unbound concentrations at the interaction site made tDDI assessment challenging. Despite these challenges, continuous improvements in IVIVE approaches enabled accurate tDDI predictions. Furthermore, the necessity of extrapolating tDDI's to special (pediatrics, pregnant, geriatrics) and diseased (renal, hepatic impaired) populations is gaining impetus and is encouraged by regulatory authorities. This review aims to visit the current state-of-the-art and summarizes contemporary knowledge on tDDI predictions. The current understanding and ability of static and dynamic PBPK models to predict tDDI are portrayed in detail. Peer-reviewed transporter abundance data in special and diseased populations from recent publications were compiled, enabling direct input into modeling tools for accurate tDDI predictions. A compilation of regulatory guidance's for tDDI's assessment and success stories from regulatory submissions are presented. Future perspectives and challenges of predicting tDDI in terms of in vitro system considerations, endogenous biomarkers, the use of empirical scaling factors, enzyme-transporter interplay, and acceptance criteria for model validation to meet the regulatory expectations were discussed.
期刊介绍:
Biopharmaceutics & Drug Dispositionpublishes original review articles, short communications, and reports in biopharmaceutics, drug disposition, pharmacokinetics and pharmacodynamics, especially those that have a direct relation to the drug discovery/development and the therapeutic use of drugs. These includes:
- animal and human pharmacological studies that focus on therapeutic response. pharmacodynamics, and toxicity related to plasma and tissue concentrations of drugs and their metabolites,
- in vitro and in vivo drug absorption, distribution, metabolism, transport, and excretion studies that facilitate investigations related to the use of drugs in man
- studies on membrane transport and enzymes, including their regulation and the impact of pharmacogenomics on drug absorption and disposition,
- simulation and modeling in drug discovery and development
- theoretical treatises
- includes themed issues and reviews
and exclude manuscripts on
- bioavailability studies reporting only on simple PK parameters such as Cmax, tmax and t1/2 without mechanistic interpretation
- analytical methods