{"title":"Estimation of iron overload with T2*MRI in children treated for hematological malignancies.","authors":"Vinay Munikoty, Kushaljit Singh Sodhi, Anmol Bhatia, Prateek Bhatia, Savita Verma Attri, Manoj K Rohit, Amita Trehan, Niranjan Khandelwal, Deepak Bansal","doi":"10.1080/08880018.2022.2098436","DOIUrl":null,"url":null,"abstract":"<p><p>Iron overload may contribute to long-term complications in childhood cancer survivors. There are limited reports of assessment of tissue iron overload in childhood leukemia by magnetic resonance imaging (MRI). A cross-sectional, observational study in children treated for hematological malignancy was undertaken. Patients ≥6 months from the end of therapy who had received ≥5 red-cell transfusions were included. Iron overload was estimated by serum ferritin (SF) and T2*MRI. Forty-five survivors were enrolled among 431 treated for hematological malignancies. The median age at diagnosis was 7-years. A median of 8 red-cell units was transfused. The median duration from the end of treatment was 15 months. An elevated SF (>1,000 ng/ml), elevated liver iron concentration (LIC) and myocardial iron concentration (MIC) were observed in 5 (11.1%), 20 (45.4%), and 2 (4.5%) patients, respectively. All survivors with SF >1,000 ng/ml had elevated LIC. The LIC correlated with SF (<i>p</i> < 0.001). MIC lacked correlation with SF or LIC. Factors including the number of red-cell units transfused and duration from the last transfusion were associated with elevated SF (<i>p</i> = 0.001, 0.002) and elevated LIC (<i>p</i> = 0.012, 0.005) in multiple linear regression. SF >595 ng/ml predicted elevated LIC with a sensitivity of 85% and specificity of 91.6% (AUC 91.2%). A cutoff >9 units of red cell transfusions had poor sensitivity and specificity of 70% and 75% (AUC 76.6%) to predict abnormal LIC. SF >600 ng/ml is a robust tool to predict iron overload, and T2*MRI should be considered in childhood cancer survivors with SF exceeding 600 ng/ml.</p>","PeriodicalId":19746,"journal":{"name":"Pediatric Hematology and Oncology","volume":"40 4","pages":"315-325"},"PeriodicalIF":1.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Hematology and Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08880018.2022.2098436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron overload may contribute to long-term complications in childhood cancer survivors. There are limited reports of assessment of tissue iron overload in childhood leukemia by magnetic resonance imaging (MRI). A cross-sectional, observational study in children treated for hematological malignancy was undertaken. Patients ≥6 months from the end of therapy who had received ≥5 red-cell transfusions were included. Iron overload was estimated by serum ferritin (SF) and T2*MRI. Forty-five survivors were enrolled among 431 treated for hematological malignancies. The median age at diagnosis was 7-years. A median of 8 red-cell units was transfused. The median duration from the end of treatment was 15 months. An elevated SF (>1,000 ng/ml), elevated liver iron concentration (LIC) and myocardial iron concentration (MIC) were observed in 5 (11.1%), 20 (45.4%), and 2 (4.5%) patients, respectively. All survivors with SF >1,000 ng/ml had elevated LIC. The LIC correlated with SF (p < 0.001). MIC lacked correlation with SF or LIC. Factors including the number of red-cell units transfused and duration from the last transfusion were associated with elevated SF (p = 0.001, 0.002) and elevated LIC (p = 0.012, 0.005) in multiple linear regression. SF >595 ng/ml predicted elevated LIC with a sensitivity of 85% and specificity of 91.6% (AUC 91.2%). A cutoff >9 units of red cell transfusions had poor sensitivity and specificity of 70% and 75% (AUC 76.6%) to predict abnormal LIC. SF >600 ng/ml is a robust tool to predict iron overload, and T2*MRI should be considered in childhood cancer survivors with SF exceeding 600 ng/ml.
期刊介绍:
PHO: Pediatric Hematology and Oncology covers all aspects of research and patient management within the area of blood disorders and malignant diseases of childhood. Our goal is to make PHO: Pediatric Hematology and Oncology the premier journal for the international community of clinicians and scientists who together aim to define optimal therapeutic strategies for children and young adults with cancer and blood disorders. The journal supports articles that address research in diverse clinical settings, exceptional case studies/series that add novel insights into pathogenesis and/or clinical care, and reviews highlighting discoveries and challenges emerging from consortia and conferences. Clinical studies as well as basic and translational research reports regarding cancer pathogenesis, genetics, molecular diagnostics, pharmacology, stem cells, molecular targeting, cellular and immune therapies and transplantation are of interest. Papers with a focus on supportive care, late effects and on related ethical, legal, psychological, social, cultural, or historical aspects of these fields are also appreciated. Reviews on important developments in the field are welcome. Articles from scientists and clinicians across the international community of Pediatric Hematology and Oncology are considered for publication. The journal is not dependent on or connected with any organization or society. All submissions undergo rigorous peer review prior to publication. Our Editorial Board includes experts in Pediatric Hematology and Oncology representing a wide range of academic and geographic diversity.