Jasmine Bagge, Arvind Manikantan Padma, Anna Casselbrant, Mats Hellström, Mihai Oltean
{"title":"Mucosal Recovery after Intestinal Transplantation in the Rat: A Sequential Histological and Molecular Assessment.","authors":"Jasmine Bagge, Arvind Manikantan Padma, Anna Casselbrant, Mats Hellström, Mihai Oltean","doi":"10.1159/000526274","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Intestinal cold ischemia and subsequent reperfusion during transplantation result in various degrees of mucosal injury ranging from mild edema to extensive mucosal loss. Mucosal barrier impairment favors bacterial translocation and fluid loss and raises nutritional challenges. The injured intestine also releases proinflammatory mediators and upregulates various epitopes toward an inflammatory phenotype. We studied the process of mucosal injury and repair during the early period after intestinal transplantation from a histological and molecular standpoint.</p><p><strong>Materials and methods: </strong>Adult Sprague-Dawley rats were used as donors and recipients. Donor intestines were perfused and stored in saline for 3 h, then transplanted heterotopically using microvascular anastomoses. Intestinal graft segments were obtained after 20 min, 6 h, 12 h, and 24 h after reperfusion. Histology studies (goblet cell count, morphometry), immunofluorescence, and western blot for several tight junction proteins, apoptosis, and inflammation-related proteins were performed.</p><p><strong>Results: </strong>Cold storage led to extensive epithelial detachment, whereas reperfusion resulted in extensive villus loss (about 60% of the initial length), and goblet cell numbers were drastically reduced. Over the first 24 h, gradual morphologic and molecular recovery was noted, although several molecular alterations persisted (increased apoptosis and inflammation, altered expression of several tight junctions).</p><p><strong>Conclusions: </strong>The current data suggest that a near-complete morphologic recovery from a moderate mucosal injury occurs within the first 24 h after intestinal transplantation. However, several molecular alterations persist and need to be considered when designing intestinal transplant experiments and choosing sampling and endpoints.</p>","PeriodicalId":12222,"journal":{"name":"European Surgical Research","volume":"64 2","pages":"201-210"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Surgical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000526274","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Intestinal cold ischemia and subsequent reperfusion during transplantation result in various degrees of mucosal injury ranging from mild edema to extensive mucosal loss. Mucosal barrier impairment favors bacterial translocation and fluid loss and raises nutritional challenges. The injured intestine also releases proinflammatory mediators and upregulates various epitopes toward an inflammatory phenotype. We studied the process of mucosal injury and repair during the early period after intestinal transplantation from a histological and molecular standpoint.
Materials and methods: Adult Sprague-Dawley rats were used as donors and recipients. Donor intestines were perfused and stored in saline for 3 h, then transplanted heterotopically using microvascular anastomoses. Intestinal graft segments were obtained after 20 min, 6 h, 12 h, and 24 h after reperfusion. Histology studies (goblet cell count, morphometry), immunofluorescence, and western blot for several tight junction proteins, apoptosis, and inflammation-related proteins were performed.
Results: Cold storage led to extensive epithelial detachment, whereas reperfusion resulted in extensive villus loss (about 60% of the initial length), and goblet cell numbers were drastically reduced. Over the first 24 h, gradual morphologic and molecular recovery was noted, although several molecular alterations persisted (increased apoptosis and inflammation, altered expression of several tight junctions).
Conclusions: The current data suggest that a near-complete morphologic recovery from a moderate mucosal injury occurs within the first 24 h after intestinal transplantation. However, several molecular alterations persist and need to be considered when designing intestinal transplant experiments and choosing sampling and endpoints.
期刊介绍:
''European Surgical Research'' features original clinical and experimental papers, condensed reviews of new knowledge relevant to surgical research, and short technical notes serving the information needs of investigators in various fields of operative medicine. Coverage includes surgery, surgical pathophysiology, drug usage, and new surgical techniques. Special consideration is given to information on the use of animal models, physiological and biological methods as well as biophysical measuring and recording systems. The journal is of particular value for workers interested in pathophysiologic concepts, new techniques and in how these can be introduced into clinical work or applied when critical decisions are made concerning the use of new procedures or drugs.