Molecular size dependence on achievable resolution from XFEL single-particle 3D reconstruction.

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL Structural Dynamics-Us Pub Date : 2023-03-01 DOI:10.1063/4.0000175
Miki Nakano, Osamu Miyashita, Florence Tama
{"title":"Molecular size dependence on achievable resolution from XFEL single-particle 3D reconstruction.","authors":"Miki Nakano,&nbsp;Osamu Miyashita,&nbsp;Florence Tama","doi":"10.1063/4.0000175","DOIUrl":null,"url":null,"abstract":"<p><p>Single-particle analysis using x-ray free-electron lasers (XFELs) is a novel method for obtaining structural information of samples in a state close to nature. In particular, it is suitable for observing the inner structure of large biomolecules by taking advantage of the high transmittance of x-rays. However, systematic studies on the resolution achievable for large molecules are lacking. In this study, the molecular size dependence of the resolution of a three-dimensional (3D) structure resulting from XFEL single-particle reconstruction is evaluated using synthetic data. Evidently, 3D structures of larger molecules can be restored with higher detail (defined relative to the molecular sizes) than smaller ones; however, reconstruction with high absolute resolution (defined in nm<sup>-1</sup>) is challenging. Our results provide useful information for the experimental design of 3D structure reconstruction using coherent x-ray diffraction patterns of single-particles.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024609/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000175","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single-particle analysis using x-ray free-electron lasers (XFELs) is a novel method for obtaining structural information of samples in a state close to nature. In particular, it is suitable for observing the inner structure of large biomolecules by taking advantage of the high transmittance of x-rays. However, systematic studies on the resolution achievable for large molecules are lacking. In this study, the molecular size dependence of the resolution of a three-dimensional (3D) structure resulting from XFEL single-particle reconstruction is evaluated using synthetic data. Evidently, 3D structures of larger molecules can be restored with higher detail (defined relative to the molecular sizes) than smaller ones; however, reconstruction with high absolute resolution (defined in nm-1) is challenging. Our results provide useful information for the experimental design of 3D structure reconstruction using coherent x-ray diffraction patterns of single-particles.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子大小依赖于可实现的分辨率从XFEL单粒子三维重建。
利用x射线自由电子激光器(XFELs)进行单粒子分析是一种获取接近自然状态下样品结构信息的新方法。尤其适合利用x射线的高透射率来观察大分子的内部结构。然而,对于大分子的分辨率还缺乏系统的研究。在这项研究中,利用合成数据评估了由XFEL单粒子重建产生的三维(3D)结构分辨率的分子大小依赖性。显然,与小分子相比,大分子的三维结构可以以更高的细节(相对于分子大小的定义)得到恢复;然而,具有高绝对分辨率(以nm-1定义)的重建是具有挑战性的。我们的结果为单粒子相干x射线衍射图重建三维结构的实验设计提供了有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
期刊最新文献
Laser-induced electron diffraction: Imaging of a single gas-phase molecular structure with one of its own electrons. Deconvolution of dynamic heterogeneity in protein structure. Role of crystal orientation in attosecond photoinjection dynamics of germanium. CrysFormer: Protein structure determination via Patterson maps, deep learning, and partial structure attention. Introduction to the Special Issue Tribute to Olga Kennard (1924-2023).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1