{"title":"Detection of lisdexamfetamine and its metabolite d-amphetamine in urine and gastric contents collected from a cadaver at forensic autopsy.","authors":"Suguru Torimitsu, Kanju Saka, Kanako Noritake, Akira Namera, Yohsuke Makino, Rutsuko Yamaguchi, Hirotaro Iwase","doi":"10.1007/s11419-022-00654-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Lisdexamfetamine (LDX), which is used for the treatment of attention-deficit/hyperactivity disorder and narcolepsy, is composed of L-lysine attached to dextroamphetamine (d-amphetamine). In this article, we report a forensic autopsy case in which prescription drugs were unknown at autopsy. While amphetamine was detected, methamphetamine could not be detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in any of samples collected. Thus, we aimed to quantify LDX concentrations in autopsy samples and to prove that the amphetamine detected in this case was due to metabolized LDX.</p><p><strong>Methods: </strong>Femoral vein blood, cardiac whole blood, urine, and gastric content samples were taken at autopsy for toxicological analysis. Qualitative and quantitative analyses were performed using LC-MS/MS. In addition, optical isomer separation for the amphetamine detected was conducted. The stability of LDX in whole blood and urine was also examined at three different temperatures.</p><p><strong>Results: </strong>The concentrations of LDX were < 4.00, 30.9, and 4.42 ng/mL in whole blood, urine, and gastric content samples, respectively. The concentrations of amphetamine were 329, 510, 2970, and 915 ng/mL in femoral vein blood, heart whole blood, urine, and gastric contents, respectively. The amphetamine detected in this case was identified to be only d-amphetamine by optical isomer separation. The d-amphetamine detected was considered to be derived from LDX. Stability experiments revealed that LDX in whole blood decreased at ambient temperature.</p><p><strong>Conclusions: </strong>The results in the present case report may be useful in interpreting whether or not the amphetamine detected in a cadaver is a metabolite of LDX.</p>","PeriodicalId":12329,"journal":{"name":"Forensic Toxicology","volume":"41 2","pages":"309-317"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11419-022-00654-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Lisdexamfetamine (LDX), which is used for the treatment of attention-deficit/hyperactivity disorder and narcolepsy, is composed of L-lysine attached to dextroamphetamine (d-amphetamine). In this article, we report a forensic autopsy case in which prescription drugs were unknown at autopsy. While amphetamine was detected, methamphetamine could not be detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in any of samples collected. Thus, we aimed to quantify LDX concentrations in autopsy samples and to prove that the amphetamine detected in this case was due to metabolized LDX.
Methods: Femoral vein blood, cardiac whole blood, urine, and gastric content samples were taken at autopsy for toxicological analysis. Qualitative and quantitative analyses were performed using LC-MS/MS. In addition, optical isomer separation for the amphetamine detected was conducted. The stability of LDX in whole blood and urine was also examined at three different temperatures.
Results: The concentrations of LDX were < 4.00, 30.9, and 4.42 ng/mL in whole blood, urine, and gastric content samples, respectively. The concentrations of amphetamine were 329, 510, 2970, and 915 ng/mL in femoral vein blood, heart whole blood, urine, and gastric contents, respectively. The amphetamine detected in this case was identified to be only d-amphetamine by optical isomer separation. The d-amphetamine detected was considered to be derived from LDX. Stability experiments revealed that LDX in whole blood decreased at ambient temperature.
Conclusions: The results in the present case report may be useful in interpreting whether or not the amphetamine detected in a cadaver is a metabolite of LDX.
期刊介绍:
The journal Forensic Toxicology provides an international forum for publication of studies on toxic substances, drugs of abuse, doping agents, chemical warfare agents, and their metabolisms and analyses, which are related to laws and ethics. It includes original articles, reviews, mini-reviews, short communications, and case reports. Although a major focus of the journal is on the development or improvement of analytical methods for the above-mentioned chemicals in human matrices, appropriate studies with animal experiments are also published.
Forensic Toxicology is the official publication of the Japanese Association of Forensic Toxicology (JAFT) and is the continuation of the Japanese Journal of Forensic Toxicology (ISSN 0915-9606).