{"title":"Stem cell-based drug delivery strategy for skin regeneration and wound healing: potential clinical applications.","authors":"Weiyue Zhang, Xin Huang","doi":"10.1186/s41232-023-00287-1","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell-based therapy is widely accepted to be a promising strategy in tissue regenerative medicine. Nevertheless, there are several obstacles to applying stem cells in skin regeneration and wound healing, which includes determining the optimum source, the processing and administration methods of stem cells, and the survival and functions of stem cells in wound sites. Owing to the limitations of applying stem cells directly, this review aims to discuss several stem cell-based drug delivery strategies in skin regeneration and wound healing and their potential clinical applications. We introduced diverse types of stem cells and their roles in wound repair. Moreover, the stem cell-based drug delivery systems including stem cell membrane-coated nanoparticles, stem cell-derived extracellular vesicles, stem cell as drug carriers, scaffold-free stem cell sheets, and stem cell-laden scaffolds were further investigated in the field of skin regeneration and wound healing. More importantly, stem cell membrane-coating nanotechnology confers great advantages compared to other drug delivery systems in a broad field of biomedical contexts. Taken together, the stem cell-based drug delivery strategy holds great promise for treating skin regeneration and wound healing.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"43 1","pages":"33"},"PeriodicalIF":5.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41232-023-00287-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stem cell-based therapy is widely accepted to be a promising strategy in tissue regenerative medicine. Nevertheless, there are several obstacles to applying stem cells in skin regeneration and wound healing, which includes determining the optimum source, the processing and administration methods of stem cells, and the survival and functions of stem cells in wound sites. Owing to the limitations of applying stem cells directly, this review aims to discuss several stem cell-based drug delivery strategies in skin regeneration and wound healing and their potential clinical applications. We introduced diverse types of stem cells and their roles in wound repair. Moreover, the stem cell-based drug delivery systems including stem cell membrane-coated nanoparticles, stem cell-derived extracellular vesicles, stem cell as drug carriers, scaffold-free stem cell sheets, and stem cell-laden scaffolds were further investigated in the field of skin regeneration and wound healing. More importantly, stem cell membrane-coating nanotechnology confers great advantages compared to other drug delivery systems in a broad field of biomedical contexts. Taken together, the stem cell-based drug delivery strategy holds great promise for treating skin regeneration and wound healing.
期刊介绍:
Inflammation and Regeneration is the official journal of the Japanese Society of Inflammation and Regeneration (JSIR). This journal provides an open access forum which covers a wide range of scientific topics in the basic and clinical researches on inflammation and regenerative medicine. It also covers investigations of infectious diseases, including COVID-19 and other emerging infectious diseases, which involve the inflammatory responses.
Inflammation and Regeneration publishes papers in the following categories: research article, note, rapid communication, case report, review and clinical drug evaluation.