Parisa Feizollahi, Mohammad Hossein Zamanian, Sara Falahi, Farhad Salari, Zahra Mahmoudi, Elham Faryadi, Ali Gorgin Karaji, Alireza Rezaiemanesh
{"title":"Association of IFIH1 and DDX58 genes polymorphism with susceptibility to COVID-19.","authors":"Parisa Feizollahi, Mohammad Hossein Zamanian, Sara Falahi, Farhad Salari, Zahra Mahmoudi, Elham Faryadi, Ali Gorgin Karaji, Alireza Rezaiemanesh","doi":"10.1007/s00430-023-00764-x","DOIUrl":null,"url":null,"abstract":"<p><p>Pattern recognition receptors of the innate immune system, such as RIG-I and MDA5, are responsible for recognizing viruses and inducing interferon production. Genetic polymorphisms in the coding regions of RLR may be associated with the severity of COVID-19. Considering the contribution of the RLR signaling in immune-mediated reactions, this study investigated the association between three SNP in the coding region of IFIH1 and DDX58 genes with the susceptibility to COVID-19 in the Kermanshah population, Iran. 177 patients with severe and 182 with mild COVID-19 were admitted for this study. Genomic DNA was extracted from peripheral blood leukocytes of patients to determine the genotypes of two SNPs, rs1990760(C>T) and rs3747517(T>C) IFIH1 gene and rs10813831(G>A) DDX58 gene using PCR-RFLP method. Our results showed that the frequency of the AA genotype of rs10813831(G>A) was associated with susceptibility to COVID-19 compared to the GG genotype (p = 0.017, OR = 2.593, 95% CI 1.173-5.736). We also observed a statistically significant difference in the recessive model for SNPs rs10813831 variant (AA versus GG + GA, p = 0.003, OR = 2.901, 95% CI 1.405-6.103). Furthermore, No significant association was found between rs1990760 (C>T) and rs3747517(T>C) of IFIH1 gene polymorphisms with COVID-19. Our findings suggest that DDX58 rs10813831(A>G) polymorphism may be associated with COVID-19 severity in the Kermanshah population, Iran.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"212 3","pages":"221-229"},"PeriodicalIF":5.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00430-023-00764-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Pattern recognition receptors of the innate immune system, such as RIG-I and MDA5, are responsible for recognizing viruses and inducing interferon production. Genetic polymorphisms in the coding regions of RLR may be associated with the severity of COVID-19. Considering the contribution of the RLR signaling in immune-mediated reactions, this study investigated the association between three SNP in the coding region of IFIH1 and DDX58 genes with the susceptibility to COVID-19 in the Kermanshah population, Iran. 177 patients with severe and 182 with mild COVID-19 were admitted for this study. Genomic DNA was extracted from peripheral blood leukocytes of patients to determine the genotypes of two SNPs, rs1990760(C>T) and rs3747517(T>C) IFIH1 gene and rs10813831(G>A) DDX58 gene using PCR-RFLP method. Our results showed that the frequency of the AA genotype of rs10813831(G>A) was associated with susceptibility to COVID-19 compared to the GG genotype (p = 0.017, OR = 2.593, 95% CI 1.173-5.736). We also observed a statistically significant difference in the recessive model for SNPs rs10813831 variant (AA versus GG + GA, p = 0.003, OR = 2.901, 95% CI 1.405-6.103). Furthermore, No significant association was found between rs1990760 (C>T) and rs3747517(T>C) of IFIH1 gene polymorphisms with COVID-19. Our findings suggest that DDX58 rs10813831(A>G) polymorphism may be associated with COVID-19 severity in the Kermanshah population, Iran.
期刊介绍:
Medical Microbiology and Immunology (MMIM) publishes key findings on all aspects of the interrelationship between infectious agents and the immune system of their hosts. The journal´s main focus is original research work on intrinsic, innate or adaptive immune responses to viral, bacterial, fungal and parasitic (protozoan and helminthic) infections and on the virulence of the respective infectious pathogens.
MMIM covers basic, translational as well as clinical research in infectious diseases and infectious disease immunology. Basic research using cell cultures, organoid, and animal models are welcome, provided that the models have a clinical correlate and address a relevant medical question.
The journal also considers manuscripts on the epidemiology of infectious diseases, including the emergence and epidemic spreading of pathogens and the development of resistance to anti-infective therapies, and on novel vaccines and other innovative measurements of prevention.
The following categories of manuscripts will not be considered for publication in MMIM:
submissions of preliminary work, of merely descriptive data sets without investigation of mechanisms or of limited global interest,
manuscripts on existing or novel anti-infective compounds, which focus on pharmaceutical or pharmacological aspects of the drugs,
manuscripts on existing or modified vaccines, unless they report on experimental or clinical efficacy studies or provide new immunological information on their mode of action,
manuscripts on the diagnostics of infectious diseases, unless they offer a novel concept to solve a pending diagnostic problem,
case reports or case series, unless they are embedded in a study that focuses on the anti-infectious immune response and/or on the virulence of a pathogen.