Kin-Sing Wong, Hiu Wing Cheung, Yung-Ching Choi, Ning-Sum To, Terence S. M. Wan, Emmie N. M. Ho
{"title":"Screening and confirmation of recombinant human follistatin in equine plasma for doping control purposes","authors":"Kin-Sing Wong, Hiu Wing Cheung, Yung-Ching Choi, Ning-Sum To, Terence S. M. Wan, Emmie N. M. Ho","doi":"10.1002/dta.3540","DOIUrl":null,"url":null,"abstract":"<p>Recombinant human follistatin (rhFST) is a potential performance-enhancing agent owing to its stimulating effect on muscle growth. Administration of rhFST to athletes is prohibited in human sports by the World Anti-Doping Agency (WADA) and in horseracing according to Article 6 of the International Agreement on Breeding, Racing and Wagering published by the International Federation of Horseracing Authorities (IFHA). For effective control of the potential misuse of rhFST in flat racing, methods for screening and confirmatory analysis are required. This paper describes the development and validation of a complete solution for detecting rhFST and confirming its presence in plasma samples collected from racehorses. A high-throughput analysis of rhFST with a commercially available enzyme-linked immunosorbent assay (ELISA) was evaluated for the screening of equine plasma samples. Any suspicious finding would then be subjected to a confirmatory analysis using immunocapture, followed by nano-liquid chromatography/high-resolution tandem mass spectrometry (nanoLC-MS/HRMS). The confirmation of rhFST by nanoLC-MS/HRMS was achieved by comparing the retention times and relative abundances of three characteristic product-ions with those from the reference standard in accordance with the industry criteria published by the Association of Official Racing Chemists. The two methods achieved comparable limit of detection (~2.5–5 ng/mL) and limit of confirmation (2.5 ng/mL or below), as well as adequate specificity, precision and reproducibility. To our knowledge, this is the first report of the screening and confirmation methods for rhFST in equine samples.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":"16 3","pages":"259-267"},"PeriodicalIF":2.6000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dta.3540","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recombinant human follistatin (rhFST) is a potential performance-enhancing agent owing to its stimulating effect on muscle growth. Administration of rhFST to athletes is prohibited in human sports by the World Anti-Doping Agency (WADA) and in horseracing according to Article 6 of the International Agreement on Breeding, Racing and Wagering published by the International Federation of Horseracing Authorities (IFHA). For effective control of the potential misuse of rhFST in flat racing, methods for screening and confirmatory analysis are required. This paper describes the development and validation of a complete solution for detecting rhFST and confirming its presence in plasma samples collected from racehorses. A high-throughput analysis of rhFST with a commercially available enzyme-linked immunosorbent assay (ELISA) was evaluated for the screening of equine plasma samples. Any suspicious finding would then be subjected to a confirmatory analysis using immunocapture, followed by nano-liquid chromatography/high-resolution tandem mass spectrometry (nanoLC-MS/HRMS). The confirmation of rhFST by nanoLC-MS/HRMS was achieved by comparing the retention times and relative abundances of three characteristic product-ions with those from the reference standard in accordance with the industry criteria published by the Association of Official Racing Chemists. The two methods achieved comparable limit of detection (~2.5–5 ng/mL) and limit of confirmation (2.5 ng/mL or below), as well as adequate specificity, precision and reproducibility. To our knowledge, this is the first report of the screening and confirmation methods for rhFST in equine samples.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.