{"title":"Relative Robustness of CDMs and (M)IRT in Measuring Growth in Latent Skills.","authors":"Qi Helen Huang, Daniel M Bolt","doi":"10.1177/00131644221117194","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have demonstrated evidence of latent skill continuity even in tests intentionally designed for measurement of binary skills. In addition, the assumption of binary skills when continuity is present has been shown to potentially create a lack of invariance in item and latent ability parameters that may undermine applications. In this article, we examine measurement of growth as one such application, and consider multidimensional item response theory (MIRT) as a competing alternative. Motivated by prior findings concerning the effects of skill continuity, we study the relative robustness of cognitive diagnostic models (CDMs) and (M)IRT models in the measurement of growth under both binary and continuous latent skill distributions. We find CDMs to be a less robust way of quantifying growth under misspecification, and subsequently provide a real-data example suggesting underestimation of growth as a likely consequence. It is suggested that researchers should regularly attend to the assumptions associated with the use of latent binary skills and consider (M)IRT as a potentially more robust alternative if unsure of their discrete nature.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"83 4","pages":"808-830"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221117194","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies have demonstrated evidence of latent skill continuity even in tests intentionally designed for measurement of binary skills. In addition, the assumption of binary skills when continuity is present has been shown to potentially create a lack of invariance in item and latent ability parameters that may undermine applications. In this article, we examine measurement of growth as one such application, and consider multidimensional item response theory (MIRT) as a competing alternative. Motivated by prior findings concerning the effects of skill continuity, we study the relative robustness of cognitive diagnostic models (CDMs) and (M)IRT models in the measurement of growth under both binary and continuous latent skill distributions. We find CDMs to be a less robust way of quantifying growth under misspecification, and subsequently provide a real-data example suggesting underestimation of growth as a likely consequence. It is suggested that researchers should regularly attend to the assumptions associated with the use of latent binary skills and consider (M)IRT as a potentially more robust alternative if unsure of their discrete nature.
期刊介绍:
Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.