A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells.

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Systems Biology Pub Date : 2023-04-12 DOI:10.15252/msb.202211127
Lingxia Qiao, Saptarshi Sinha, Amer Ali Abd El-Hafeez, I-Chung Lo, Krishna K Midde, Tony Ngo, Nicolas Aznar, Inmaculada Lopez-Sanchez, Vijay Gupta, Marilyn G Farquhar, Padmini Rangamani, Pradipta Ghosh
{"title":"A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells.","authors":"Lingxia Qiao,&nbsp;Saptarshi Sinha,&nbsp;Amer Ali Abd El-Hafeez,&nbsp;I-Chung Lo,&nbsp;Krishna K Midde,&nbsp;Tony Ngo,&nbsp;Nicolas Aznar,&nbsp;Inmaculada Lopez-Sanchez,&nbsp;Vijay Gupta,&nbsp;Marilyn G Farquhar,&nbsp;Padmini Rangamani,&nbsp;Pradipta Ghosh","doi":"10.15252/msb.202211127","DOIUrl":null,"url":null,"abstract":"<p><p>Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to \"secrete-and-sense\" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090951/pdf/","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15252/msb.202211127","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 8

Abstract

Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多细胞真核细胞分泌偶联细胞自主电路。
癌症代表着复杂的自主系统,在生长信号中表现出自给自足。癌细胞“分泌和感知”生长因子(GFs)的能力推动了癌细胞的自主生长,这是一个鲜为人知的现象。通过综合计算和实验方法,我们分析了反馈耦合的GTPase电路对分泌通路的影响,该通路赋予了分泌耦合的自主性。当ras -超家族单体GTPase Arf1和异源三聚体GTPase Giαβγ及其相应的gap和gef通过GIV/Girdin偶联时,该电路就组装起来了,GIV/Girdin是一种已知在多种癌症中促进侵袭性特征的蛋白质。电路中的一个正反馈回路和两个关键负反馈回路形成闭环控制,使两个GTPases相互协同调节,并将预期的arf1依赖性分泌的开关样行为转化为意想不到的感应和分泌的剂量-响应校准行为。这种行为转化为细胞生存,是自我维持的刺激比例分泌。蛋白质组学研究和蛋白质-蛋白质相互作用网络分析指出GF(例如表皮GF)是这种自我维持的关键刺激。研究结果强调了癌细胞中两个生物开关的增强耦合对于实现生长因子分泌耦合自治的多尺度反馈控制至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
期刊最新文献
Evolution and stability of complex microbial communities driven by trade-offs. Proteome-scale characterisation of motif-based interactome rewiring by disease mutations. Somatic CpG hypermutation is associated with mismatch repair deficiency in cancer. Rescuing error control in crosslinking mass spectrometry. Time-resolved interactome profiling deconvolutes secretory protein quality control dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1