{"title":"Utilization of Bioactive Silk Protein in the Development of Optical Devices: Recent Advancements and Applications.","authors":"Rishav Sharma, Rishabha Malviya","doi":"10.2174/1389203724666230412092734","DOIUrl":null,"url":null,"abstract":"<p><p>Typically, materials used to create optical devices have chemical and physical properties that have been precisely designed for a narrowly defined purpose, allowing for changes in design to account for device variability. There is a growing need for devices built of materials with changeable optical responses, as optical systems are incorporated into platforms with much functionality. Regenerated silk fibroin is described in this article as an enabling gadget with an active optical response as a result of the inherent characteristics of proteins. Silk's capacity for controlled movement, to swell and shrink reversibly, alter conformation and degradation that is customizable, impacts both the shape and the response of the optical structure-representative silk-based gadgets. The diversity of silk material is shown and discussed in this paper, concentrating on architectures that show reconfigurable behavior, an optical waveguide that is physically temporary and provides reversible responses. Finally, innovative research directions for silk-based materials and optical devices are presented in this paper. Since ancient times, silk, a natural biopolymer, has been used as a repair material in medicine. In the past 20 years, it has attracted a lot of interest to be used in several biomedical applications. Various healthcare items with silk as their substrate have been developed thanks to significant advancements in silk biomaterial research. Silk is a fabric created from spider and silkworm cocoons. Hierarchical structures and conventional structural elements are present in them. Different silk types can be produced using certain methods, such as films, fibers, microspheres, sponges, and hydrogels. The structural characteristics of secondary proteins present in silk can also be modified. This paper investigates the use of silk in biomedical and optical applications, and examines the technical trend in electronic fields.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389203724666230412092734","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Typically, materials used to create optical devices have chemical and physical properties that have been precisely designed for a narrowly defined purpose, allowing for changes in design to account for device variability. There is a growing need for devices built of materials with changeable optical responses, as optical systems are incorporated into platforms with much functionality. Regenerated silk fibroin is described in this article as an enabling gadget with an active optical response as a result of the inherent characteristics of proteins. Silk's capacity for controlled movement, to swell and shrink reversibly, alter conformation and degradation that is customizable, impacts both the shape and the response of the optical structure-representative silk-based gadgets. The diversity of silk material is shown and discussed in this paper, concentrating on architectures that show reconfigurable behavior, an optical waveguide that is physically temporary and provides reversible responses. Finally, innovative research directions for silk-based materials and optical devices are presented in this paper. Since ancient times, silk, a natural biopolymer, has been used as a repair material in medicine. In the past 20 years, it has attracted a lot of interest to be used in several biomedical applications. Various healthcare items with silk as their substrate have been developed thanks to significant advancements in silk biomaterial research. Silk is a fabric created from spider and silkworm cocoons. Hierarchical structures and conventional structural elements are present in them. Different silk types can be produced using certain methods, such as films, fibers, microspheres, sponges, and hydrogels. The structural characteristics of secondary proteins present in silk can also be modified. This paper investigates the use of silk in biomedical and optical applications, and examines the technical trend in electronic fields.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.