{"title":"Precise definition of the breakpoints of an apparently balanced translocation between chromosome 3q26 and chromosome 7q36: Role of KMT2C disruption","authors":"Mamiko Yamada, Hisato Suzuki, Fuyuki Miya, Kiyotaka Kosugiyama, Takeshi Ujiie, Hidefumi Tonoki, Kenjiro Kosaki","doi":"10.1111/cga.12514","DOIUrl":null,"url":null,"abstract":"<p>When a de novo balanced reciprocal translocation is identified in the patient, the cause of phenotype of the patient can be explained by detecting the breakpoints of the genes. Here, we report a 3-year-old patient with developmental delay, autism spectrum disorder, and distinctive facial features who had an apparently balanced translocation between chromosome 3q26 and chromosome 7q36. Nanopore long-read sequencing revealed that balanced translocation disrupted the <i>KMT2C</i> gene, the haploinsufficiency of which leads to Kleefstra syndrome 2 characterized by delayed psychomotor development, variable intellectual disability and mild dysmorphism. Nanopore long-read sequencing was shown to be useful in elucidating the exact genetic etiology of patients with nonspecific clinical findings.</p>","PeriodicalId":10626,"journal":{"name":"Congenital Anomalies","volume":"63 4","pages":"121-124"},"PeriodicalIF":1.3000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Congenital Anomalies","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cga.12514","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
When a de novo balanced reciprocal translocation is identified in the patient, the cause of phenotype of the patient can be explained by detecting the breakpoints of the genes. Here, we report a 3-year-old patient with developmental delay, autism spectrum disorder, and distinctive facial features who had an apparently balanced translocation between chromosome 3q26 and chromosome 7q36. Nanopore long-read sequencing revealed that balanced translocation disrupted the KMT2C gene, the haploinsufficiency of which leads to Kleefstra syndrome 2 characterized by delayed psychomotor development, variable intellectual disability and mild dysmorphism. Nanopore long-read sequencing was shown to be useful in elucidating the exact genetic etiology of patients with nonspecific clinical findings.
期刊介绍:
Congenital Anomalies is the official English language journal of the Japanese Teratology Society, and publishes original articles in laboratory as well as clinical research in all areas of abnormal development and related fields, from all over the world. Although contributions by members of the teratology societies affiliated with The International Federation of Teratology Societies are given priority, contributions from non-members are welcomed.