Protective Role of Cytochrome C Oxidase 5A (COX5A) against Mitochondrial Disorder and Oxidative Stress in VSMC Phenotypic Modulation and Neointima Formation.

IF 2.8 3区 医学 Q2 PERIPHERAL VASCULAR DISEASE Current vascular pharmacology Pub Date : 2023-01-01 DOI:10.2174/1570161121666230315142507
Haijing Guan, Jingwen Sun, Xiuying Liang, Wenjuan Yao
{"title":"Protective Role of Cytochrome C Oxidase 5A (COX5A) against Mitochondrial Disorder and Oxidative Stress in VSMC Phenotypic Modulation and Neointima Formation.","authors":"Haijing Guan,&nbsp;Jingwen Sun,&nbsp;Xiuying Liang,&nbsp;Wenjuan Yao","doi":"10.2174/1570161121666230315142507","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The pathological role of cytochrome c oxidase 5A (COX5A) in vascular neointima formation remains unknown.</p><p><strong>Aim: </strong>This study aims to investigate the role of COX5A on platelet-derived growth factor BB (PDGFBB)- mediated smooth muscle phenotypic modulation and neointima formation and clarify the molecular mechanisms behind this effect.</p><p><strong>Methods: </strong>For <i>in vitro assays</i>, human aortic vascular smooth muscle cells (HA-VSMCs) were transfected with pcDNA3.1-COX5A and COX5A siRNA to overexpress and knockdown COX5A, respectively. Mitochondrial complex IV activity, oxygen consumption rate (OCR), H<sub>2</sub>O<sub>2</sub> and ATP production, reactive oxygen species (ROS) generation, cell proliferation, and migration were measured. For in vivo assays, rats after balloon injury (BI) were injected with recombinant lentivirus carrying the COX5A gene. Mitochondrial COX5A expression, carotid arterial morphology, mitochondrial ultrastructure, and ROS were measured.</p><p><strong>Results: </strong>The results showed that PDGF-BB reduced the level and altered the distribution of COX5A in mitochondria, as well as reduced complex IV activity, ATP synthesis, and OCR while increasing H<sub>2</sub>O<sub>2</sub> synthesis, ROS production, and cell proliferation and migration. These effects were reversed by overexpression of COX5A and aggravated by COX5A knockdown. In addition, COX5A overexpression attenuated BI-induced neointima formation, muscle fiber area ratio, VSMC migration to the intima, mitochondrial ultrastructural damage, and vascular ROS generation.</p><p><strong>Conclusion: </strong>The present study demonstrated that COX5A protects VSMCs against phenotypic modulation by improving mitochondrial respiratory function and attenuating mitochondrial damage, as well as reducing oxidative stress, thereby preventing neointima formation.</p>","PeriodicalId":11278,"journal":{"name":"Current vascular pharmacology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current vascular pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1570161121666230315142507","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The pathological role of cytochrome c oxidase 5A (COX5A) in vascular neointima formation remains unknown.

Aim: This study aims to investigate the role of COX5A on platelet-derived growth factor BB (PDGFBB)- mediated smooth muscle phenotypic modulation and neointima formation and clarify the molecular mechanisms behind this effect.

Methods: For in vitro assays, human aortic vascular smooth muscle cells (HA-VSMCs) were transfected with pcDNA3.1-COX5A and COX5A siRNA to overexpress and knockdown COX5A, respectively. Mitochondrial complex IV activity, oxygen consumption rate (OCR), H2O2 and ATP production, reactive oxygen species (ROS) generation, cell proliferation, and migration were measured. For in vivo assays, rats after balloon injury (BI) were injected with recombinant lentivirus carrying the COX5A gene. Mitochondrial COX5A expression, carotid arterial morphology, mitochondrial ultrastructure, and ROS were measured.

Results: The results showed that PDGF-BB reduced the level and altered the distribution of COX5A in mitochondria, as well as reduced complex IV activity, ATP synthesis, and OCR while increasing H2O2 synthesis, ROS production, and cell proliferation and migration. These effects were reversed by overexpression of COX5A and aggravated by COX5A knockdown. In addition, COX5A overexpression attenuated BI-induced neointima formation, muscle fiber area ratio, VSMC migration to the intima, mitochondrial ultrastructural damage, and vascular ROS generation.

Conclusion: The present study demonstrated that COX5A protects VSMCs against phenotypic modulation by improving mitochondrial respiratory function and attenuating mitochondrial damage, as well as reducing oxidative stress, thereby preventing neointima formation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞色素C氧化酶5A (COX5A)对线粒体紊乱和氧化应激在VSMC表型调节和内膜形成中的保护作用
背景:细胞色素c氧化酶5A (COX5A)在血管新生内膜形成中的病理作用尚不清楚。目的:本研究旨在探讨COX5A在血小板衍生生长因子BB (PDGFBB)介导的平滑肌表型调节和新生内膜形成中的作用,并阐明其分子机制。方法:体外实验采用pcDNA3.1-COX5A和COX5A siRNA转染人主动脉血管平滑肌细胞(HA-VSMCs),分别过表达和低表达COX5A。测定线粒体复合体IV活性、耗氧率(OCR)、H2O2和ATP生成、活性氧(ROS)生成、细胞增殖和迁移。在体内实验中,给球囊损伤(BI)后的大鼠注射携带COX5A基因的重组慢病毒。检测线粒体COX5A表达、颈动脉形态、线粒体超微结构和ROS。结果:结果显示PDGF-BB降低线粒体中COX5A的水平并改变其分布,降低复合物IV活性、ATP合成和OCR,同时增加H2O2合成、ROS生成和细胞增殖和迁移。这些作用可被过表达的COX5A逆转,并因COX5A的下调而加重。此外,COX5A过表达可减弱bi诱导的新内膜形成、肌纤维面积比、VSMC向内膜迁移、线粒体超微结构损伤和血管ROS生成。结论:本研究表明,COX5A通过改善线粒体呼吸功能,减轻线粒体损伤,减少氧化应激,从而防止新内膜的形成,从而保护VSMCs免受表型调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current vascular pharmacology
Current vascular pharmacology 医学-外周血管病
CiteScore
9.20
自引率
4.40%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Current Vascular Pharmacology publishes clinical and research-based reviews/mini-reviews, original research articles, letters, debates, drug clinical trial studies and guest edited issues to update all those concerned with the treatment of vascular disease, bridging the gap between clinical practice and ongoing research. Vascular disease is the commonest cause of death in Westernized countries and its incidence is on the increase in developing countries. It follows that considerable research is directed at establishing effective treatment for acute vascular events. Long-term treatment has also received considerable attention (e.g. for symptomatic relief). Furthermore, effective prevention, whether primary or secondary, is backed by the findings of several landmark trials. Vascular disease is a complex field with primary care physicians and nurse practitioners as well as several specialties involved. The latter include cardiology, vascular and cardio thoracic surgery, general medicine, radiology, clinical pharmacology and neurology (stroke units).
期刊最新文献
Rare Endocrine Disorders and Peripheral Arterial Disease. Where to Next after BASIL-2 and BEST-CLI? Current Strategies for Atrial Fibrillation Prevention and Management: Taming the Commonest Cardiac Arrhythmia. Delineating the NOX-Mediated Promising Therapeutic Strategies for the Management of Various Cardiovascular Disorders: A Comprehensive Review. Comparison of Amiodarone Loading Dosage in the Treatment of Postoperative Atrial Fibrillation: High Versus Standard Dose Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1