{"title":"Distribution of P2X3 purinoceptor-immunoreactive sensory nerve endings in the carotid body of Japanese macaque (Macaca fuscata)","authors":"Takuya Yokoyama, Masato Hirakawa, Kei Mochizuki, Takashi Suzuki, Katsumi Nakajima, Tomoyuki Saino","doi":"10.1007/s12565-023-00735-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the carotid body of laboratory rodents, adenosine 5′-triphosphate (ATP)-mediated transmission is regarded as critical for transmission from chemoreceptor type I cells to P2X3 purinoceptor-expressing sensory nerve endings. The present study investigated the distribution of P2X3-immunoreactive sensory nerve endings in the carotid body of the adult male Japanese monkey (<i>Macaca fuscata</i>) using multilabeling immunofluorescence. Immunoreactivity for P2X3 was detected in nerve endings associated with chemoreceptor type I cells immunoreactive for synaptophysin. Spherical or flattened terminal parts of P2X3-immunoreactive nerve endings were in close apposition to the perinuclear cytoplasm of synaptophysin-immunoreactive type I cells. Immunoreactivity for ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2), which hydrolyzes extracellular ATP, was localized in the cell body and cytoplasmic processes of S100B-immunoreactive cells. NTPDase2-immunoreactive cells surrounded P2X3-immunoreactive terminal parts and synaptophysin-immunoreactive type I cells, but did not intrude into attachment surfaces between terminal parts and type I cells. These results suggest ATP-mediated transmission between type I cells and sensory nerve endings in the carotid body of the Japanese monkey, as well as those of rodents.</p></div>","PeriodicalId":7816,"journal":{"name":"Anatomical Science International","volume":"99 1","pages":"68 - 74"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Science International","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12565-023-00735-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the carotid body of laboratory rodents, adenosine 5′-triphosphate (ATP)-mediated transmission is regarded as critical for transmission from chemoreceptor type I cells to P2X3 purinoceptor-expressing sensory nerve endings. The present study investigated the distribution of P2X3-immunoreactive sensory nerve endings in the carotid body of the adult male Japanese monkey (Macaca fuscata) using multilabeling immunofluorescence. Immunoreactivity for P2X3 was detected in nerve endings associated with chemoreceptor type I cells immunoreactive for synaptophysin. Spherical or flattened terminal parts of P2X3-immunoreactive nerve endings were in close apposition to the perinuclear cytoplasm of synaptophysin-immunoreactive type I cells. Immunoreactivity for ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2), which hydrolyzes extracellular ATP, was localized in the cell body and cytoplasmic processes of S100B-immunoreactive cells. NTPDase2-immunoreactive cells surrounded P2X3-immunoreactive terminal parts and synaptophysin-immunoreactive type I cells, but did not intrude into attachment surfaces between terminal parts and type I cells. These results suggest ATP-mediated transmission between type I cells and sensory nerve endings in the carotid body of the Japanese monkey, as well as those of rodents.
期刊介绍:
The official English journal of the Japanese Association of Anatomists, Anatomical Science International (formerly titled Kaibogaku Zasshi) publishes original research articles dealing with morphological sciences.
Coverage in the journal includes molecular, cellular, histological and gross anatomical studies on humans and on normal and experimental animals, as well as functional morphological, biochemical, physiological and behavioral studies if they include morphological analysis.