{"title":"Silencing of dopamine receptor D5 inhibits the browning of 3T3-L1 adipocytes and ATP-consuming futile cycles in C2C12 muscle cells.","authors":"Kiros Haddish, Jong Won Yun","doi":"10.1080/13813455.2023.2206983","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As a part of the catecholamines, dopamine receptors (DRs) have not been extensively studied like β3-AR in the thermogenesis process. The present study investigates the effect of DRD5 in browning events and ATP-consuming futile cycles.</p><p><strong>Methods: </strong>siRNA technology, qPCR, immunoblot analysis, immunofluorescence, and staining methods were used to investigate the effect of DRD5 on 3T3-L1 and C2C12 cells.</p><p><strong>Results: </strong>si<i>Ddr5</i> increased lipogenesis-associated effectors, and adipogenesis markers while reducing the expression of beige fat effectors. ATP-consuming futile cycle markers were also reduced following the si<i>Drd5</i>. On the contrary, pharmacological activation of DRD5 stimulated these effectors. Our mechanistic studies elucidated that DRD5 mediates fat browning <i>via</i> the cAMP-PKA-p38 MAPK signalling pathway in 3T3-L1 cells as well as the cAMP-SERCA-RyR pathway for the ATP-consuming futile cycles in both cells.</p><p><strong>Conclusions: </strong>si<i>Drd5</i> positively regulates browning and ATP-consuming futile cycles, and understanding its functions will provide insights into novel strategies to treat obesity.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"555-567"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2023.2206983","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: As a part of the catecholamines, dopamine receptors (DRs) have not been extensively studied like β3-AR in the thermogenesis process. The present study investigates the effect of DRD5 in browning events and ATP-consuming futile cycles.
Methods: siRNA technology, qPCR, immunoblot analysis, immunofluorescence, and staining methods were used to investigate the effect of DRD5 on 3T3-L1 and C2C12 cells.
Results: siDdr5 increased lipogenesis-associated effectors, and adipogenesis markers while reducing the expression of beige fat effectors. ATP-consuming futile cycle markers were also reduced following the siDrd5. On the contrary, pharmacological activation of DRD5 stimulated these effectors. Our mechanistic studies elucidated that DRD5 mediates fat browning via the cAMP-PKA-p38 MAPK signalling pathway in 3T3-L1 cells as well as the cAMP-SERCA-RyR pathway for the ATP-consuming futile cycles in both cells.
Conclusions: siDrd5 positively regulates browning and ATP-consuming futile cycles, and understanding its functions will provide insights into novel strategies to treat obesity.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.