Remote collection of electrophysiological data with brain wearables: opportunities and challenges.

Richard James Sugden, Viet-Linh Luke Pham-Kim-Nghiem-Phu, Ingrid Campbell, Alberto Leon, Phedias Diamandis
{"title":"Remote collection of electrophysiological data with brain wearables: opportunities and challenges.","authors":"Richard James Sugden,&nbsp;Viet-Linh Luke Pham-Kim-Nghiem-Phu,&nbsp;Ingrid Campbell,&nbsp;Alberto Leon,&nbsp;Phedias Diamandis","doi":"10.1186/s42234-023-00114-5","DOIUrl":null,"url":null,"abstract":"<p><p>Collection of electroencephalographic (EEG) data provides an opportunity to non-invasively study human brain plasticity, learning and the evolution of various neuropsychiatric disorders. Traditionally, due to sophisticated hardware, EEG studies have been largely limited to research centers which restrict both testing contexts and repeated longitudinal measures. The emergence of low-cost \"wearable\" EEG devices now provides the prospect of frequent and remote monitoring of the human brain for a variety of physiological and pathological brain states. In this manuscript, we survey evidence that EEG wearables provide high-quality data and review various software used for remote data collection. We then discuss the growing body of evidence supporting the feasibility of remote and longitudinal EEG data collection using wearables including a discussion of potential biomedical applications of these protocols. Lastly, we discuss some additional challenges needed for EEG wearable research to gain further widespread adoption.</p>","PeriodicalId":72363,"journal":{"name":"Bioelectronic medicine","volume":"9 1","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronic medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42234-023-00114-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Collection of electroencephalographic (EEG) data provides an opportunity to non-invasively study human brain plasticity, learning and the evolution of various neuropsychiatric disorders. Traditionally, due to sophisticated hardware, EEG studies have been largely limited to research centers which restrict both testing contexts and repeated longitudinal measures. The emergence of low-cost "wearable" EEG devices now provides the prospect of frequent and remote monitoring of the human brain for a variety of physiological and pathological brain states. In this manuscript, we survey evidence that EEG wearables provide high-quality data and review various software used for remote data collection. We then discuss the growing body of evidence supporting the feasibility of remote and longitudinal EEG data collection using wearables including a discussion of potential biomedical applications of these protocols. Lastly, we discuss some additional challenges needed for EEG wearable research to gain further widespread adoption.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用大脑可穿戴设备远程收集电生理数据:机遇与挑战。
脑电图(EEG)数据的收集为非侵入性研究人类大脑的可塑性、学习和各种神经精神疾病的演变提供了机会。传统上,由于复杂的硬件,脑电图研究很大程度上局限于研究中心,这限制了测试背景和重复的纵向测量。低成本“可穿戴”脑电图设备的出现,为频繁和远程监测人类大脑的各种生理和病理状态提供了前景。在本文中,我们调查了EEG可穿戴设备提供高质量数据的证据,并回顾了用于远程数据收集的各种软件。然后,我们讨论了越来越多的证据支持使用可穿戴设备远程和纵向EEG数据收集的可行性,包括讨论这些协议的潜在生物医学应用。最后,我们讨论了EEG可穿戴研究需要面临的一些额外挑战,以获得进一步的广泛采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Comparisons of different electrical stimulation modalities for treating visceral pain in a rodent model of irritable bowel syndrome. Blue light stimulation of the blind spot in human: from melanopsin to clinically relevant biomarkers of myopia. Machine learning-optimized non-invasive brain stimulation and treatment response classification for major depression. Design and development of a machine-learning-driven opioid overdose risk prediction tool integrated in electronic health records in primary care settings. Virtual reality in stroke recovery: a meta-review of systematic reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1