{"title":"Marginal adaptation and fracture resistance of milled and 3D-printed CAD/CAM hybrid dental crown materials with various occlusal thicknesses.","authors":"Pisit Suksuphan, Nantawan Krajangta, Pavinee Padipatvuthikul Didron, Thanakorn Wasanapiarnpong, Thanasak Rakmanee","doi":"10.2186/jpr.JPR_D_23_00089","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the marginal adaptation and fracture resistance of three computer-aided design/computer-assisted manufacturing hybrid dental materials with different occlusal thicknesses.</p><p><strong>Methods: </strong>Ninety single-molar crowns were digitally fabricated using a milled hybrid nanoceramic (Cerasmart, CE), polymer-infiltrated ceramic network (PICN, Vita Enamic, VE), and 3D-printed materials (Varseosmile, VS) with occlusal thicknesses of 0.8, 1, and 1.5 mm (10 specimens/group). Anatomical 3D-printed resin dies (Rigid 10K) were used as supporting materials. A CEREC MCX milling unit and a DLP-based 3D printer, Freeform Pro 2, were utilized to produce the crown samples. Before cementation, the marginal adaptation, absolute marginal discrepancy (AMD), and marginal gap (MG) were assessed using micro-CT scanning. After cementation with self-adhesive resin cement, fracture resistance was evaluated using a universal testing machine. The number of fractured crowns and the maximum fracture values (N) were recorded. Data were statistically analyzed using both one- and two-way ANOVA, followed by Tukey's honestly significant difference (HSD) test.</p><p><strong>Results: </strong>For all occlusal thicknesses, the VS crowns demonstrated the lowest AMD and MG distances, significantly different from those of the other two milling groups (P < 0.05), whereas CE and VE did not differ significantly (P > 0.05). All VS crowns were fractured using the lowest loading forces (1480.3±226.1 to 1747.2±108.7 N). No CE and 1 and 1.5 mm VE crowns fractured under a 2000 N maximum load.</p><p><strong>Conclusions: </strong>All hybrid-material crowns demonstrated favorable marginal adaptation within a clinically acceptable range, with 3D printing yielding superior results to milling. All materials could withstand normal occlusal force even with a 0.8 mm occlusal thickness.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2186/jpr.JPR_D_23_00089","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate the marginal adaptation and fracture resistance of three computer-aided design/computer-assisted manufacturing hybrid dental materials with different occlusal thicknesses.
Methods: Ninety single-molar crowns were digitally fabricated using a milled hybrid nanoceramic (Cerasmart, CE), polymer-infiltrated ceramic network (PICN, Vita Enamic, VE), and 3D-printed materials (Varseosmile, VS) with occlusal thicknesses of 0.8, 1, and 1.5 mm (10 specimens/group). Anatomical 3D-printed resin dies (Rigid 10K) were used as supporting materials. A CEREC MCX milling unit and a DLP-based 3D printer, Freeform Pro 2, were utilized to produce the crown samples. Before cementation, the marginal adaptation, absolute marginal discrepancy (AMD), and marginal gap (MG) were assessed using micro-CT scanning. After cementation with self-adhesive resin cement, fracture resistance was evaluated using a universal testing machine. The number of fractured crowns and the maximum fracture values (N) were recorded. Data were statistically analyzed using both one- and two-way ANOVA, followed by Tukey's honestly significant difference (HSD) test.
Results: For all occlusal thicknesses, the VS crowns demonstrated the lowest AMD and MG distances, significantly different from those of the other two milling groups (P < 0.05), whereas CE and VE did not differ significantly (P > 0.05). All VS crowns were fractured using the lowest loading forces (1480.3±226.1 to 1747.2±108.7 N). No CE and 1 and 1.5 mm VE crowns fractured under a 2000 N maximum load.
Conclusions: All hybrid-material crowns demonstrated favorable marginal adaptation within a clinically acceptable range, with 3D printing yielding superior results to milling. All materials could withstand normal occlusal force even with a 0.8 mm occlusal thickness.