{"title":"Unfolded protein response suppression potentiates LPS-induced barrier dysfunction and inflammation in bovine pulmonary artery endothelial cells.","authors":"Nektarios Barabutis, Mohammad S Akhter","doi":"10.1080/21688370.2023.2232245","DOIUrl":null,"url":null,"abstract":"<p><p>The development of novel strategies to counteract diseases related to barrier dysfunction is a priority, since sepsis and acute respiratory distress syndrome are still associated with high mortality rates. In the present study, we focus on the effects of the unfolded protein response suppressor (UPR) 4-Phenylbutyrate (4-PBA) in Lipopolysaccharides (LPS)-induced endothelial injury, to investigate the effects of that compound in the corresponding damage. 4-PBA suppressed binding immunoglobulin protein (BiP) - a UPR activation marker - and potentiated LPS - induced signal transducer and activator of transcription 3 (STAT3) and extracellular signal‑regulated protein kinase (ERK) 1/2 activation. In addition to those effects, 4-PBA enhanced paracellular hyperpermeability in inflamed bovine pulmonary endothelial cells, and did not affect cell viability in moderate concentrations. Our observations suggest that UPR suppression due to 4-PBA augments LPS-induced endothelial injury, as well as the corresponding barrier disruption.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2232245"},"PeriodicalIF":3.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2023.2232245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of novel strategies to counteract diseases related to barrier dysfunction is a priority, since sepsis and acute respiratory distress syndrome are still associated with high mortality rates. In the present study, we focus on the effects of the unfolded protein response suppressor (UPR) 4-Phenylbutyrate (4-PBA) in Lipopolysaccharides (LPS)-induced endothelial injury, to investigate the effects of that compound in the corresponding damage. 4-PBA suppressed binding immunoglobulin protein (BiP) - a UPR activation marker - and potentiated LPS - induced signal transducer and activator of transcription 3 (STAT3) and extracellular signal‑regulated protein kinase (ERK) 1/2 activation. In addition to those effects, 4-PBA enhanced paracellular hyperpermeability in inflamed bovine pulmonary endothelial cells, and did not affect cell viability in moderate concentrations. Our observations suggest that UPR suppression due to 4-PBA augments LPS-induced endothelial injury, as well as the corresponding barrier disruption.
期刊介绍:
Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.