Electroencephalogram-Based Brain Connectivity Analysis in Prolonged Disorders of Consciousness.

IF 3 4区 医学 Q2 NEUROSCIENCES Neural Plasticity Pub Date : 2023-01-01 DOI:10.1155/2023/4142053
Yuzhang Wu, Zhitao Li, Ruowei Qu, Yangang Wang, Zhongzhen Li, Le Wang, Guangrui Zhao, Keke Feng, Yifeng Cheng, Shaoya Yin
{"title":"Electroencephalogram-Based Brain Connectivity Analysis in Prolonged Disorders of Consciousness.","authors":"Yuzhang Wu,&nbsp;Zhitao Li,&nbsp;Ruowei Qu,&nbsp;Yangang Wang,&nbsp;Zhongzhen Li,&nbsp;Le Wang,&nbsp;Guangrui Zhao,&nbsp;Keke Feng,&nbsp;Yifeng Cheng,&nbsp;Shaoya Yin","doi":"10.1155/2023/4142053","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prolonged disorders of consciousness (pDOC) are common in neurology and place a heavy burden on families and society. This study is aimed at investigating the characteristics of brain connectivity in patients with pDOC based on quantitative EEG (qEEG) and extending a new direction for the evaluation of pDOC.</p><p><strong>Methods: </strong>Participants were divided into a control group (CG) and a DOC group by the presence or absence of pDOC. Participants underwent magnetic resonance imaging (MRI) T1 three-dimensional magnetization with a prepared rapid acquisition gradient echo (3D-T1-MPRAGE) sequence, and video EEG data were collected. After calculating the power spectrum by EEG data analysis tool, DTABR ((<i>δ</i> + <i>θ</i>)/(<i>α</i> + <i>β</i>) ratio), Pearson's correlation coefficient (Pearson <i>r</i>), Granger's causality, and phase transfer entropy (PTE), we performed statistical analysis between two groups. Finally, receiver operating characteristic (ROC) curves of connectivity metrics were made.</p><p><strong>Results: </strong>The proportion of power in frontal, central, parietal, and temporal regions in the DOC group was lower than that in the CG. The percentage of delta power in the DOC group was significantly higher than that in the CG, the DTABR in the DOC group was higher than that in the CG, and the value was inverted. The Pearson <i>r</i> of the DOC group was higher than that of CG. The Pearson <i>r</i> of the delta band (<i>Z</i> = -6.71, <i>P</i> < 0.01), theta band (<i>Z</i> = -15.06, <i>P</i> < 0.01), and alpha band (<i>Z</i> = -28.45, <i>P</i> < 0.01) were statistically significant. Granger causality showed that the intensity of directed connections between the two hemispheres in the DOC group at the same threshold was significantly reduced (<i>Z</i> = -82.43, <i>P</i> < 0.01). The PTE of each frequency band in the DOC group was lower than that in the CG. The PTE of the delta band (<i>Z</i> = -42.68, <i>P</i> < 0.01), theta band (<i>Z</i> = -56.79, <i>P</i> < 0.01), the alpha band (<i>Z</i> = -35.11, <i>P</i> < 0.01), and beta band (<i>Z</i> = -63.74, <i>P</i> < 0.01) had statistical significance.</p><p><strong>Conclusion: </strong>Brain connectivity analysis based on EEG has the advantages of being noninvasive, convenient, and bedside. The Pearson <i>r</i> of DTABR, delta, theta, and alpha bands, Granger's causality, and PTE of the delta, theta, alpha, and beta bands can be used as biological markers to distinguish between pDOC and healthy people, especially when behavior evaluation is difficult or ambiguous; it can supplement clinical diagnosis.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"4142053"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129427/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/4142053","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Prolonged disorders of consciousness (pDOC) are common in neurology and place a heavy burden on families and society. This study is aimed at investigating the characteristics of brain connectivity in patients with pDOC based on quantitative EEG (qEEG) and extending a new direction for the evaluation of pDOC.

Methods: Participants were divided into a control group (CG) and a DOC group by the presence or absence of pDOC. Participants underwent magnetic resonance imaging (MRI) T1 three-dimensional magnetization with a prepared rapid acquisition gradient echo (3D-T1-MPRAGE) sequence, and video EEG data were collected. After calculating the power spectrum by EEG data analysis tool, DTABR ((δ + θ)/(α + β) ratio), Pearson's correlation coefficient (Pearson r), Granger's causality, and phase transfer entropy (PTE), we performed statistical analysis between two groups. Finally, receiver operating characteristic (ROC) curves of connectivity metrics were made.

Results: The proportion of power in frontal, central, parietal, and temporal regions in the DOC group was lower than that in the CG. The percentage of delta power in the DOC group was significantly higher than that in the CG, the DTABR in the DOC group was higher than that in the CG, and the value was inverted. The Pearson r of the DOC group was higher than that of CG. The Pearson r of the delta band (Z = -6.71, P < 0.01), theta band (Z = -15.06, P < 0.01), and alpha band (Z = -28.45, P < 0.01) were statistically significant. Granger causality showed that the intensity of directed connections between the two hemispheres in the DOC group at the same threshold was significantly reduced (Z = -82.43, P < 0.01). The PTE of each frequency band in the DOC group was lower than that in the CG. The PTE of the delta band (Z = -42.68, P < 0.01), theta band (Z = -56.79, P < 0.01), the alpha band (Z = -35.11, P < 0.01), and beta band (Z = -63.74, P < 0.01) had statistical significance.

Conclusion: Brain connectivity analysis based on EEG has the advantages of being noninvasive, convenient, and bedside. The Pearson r of DTABR, delta, theta, and alpha bands, Granger's causality, and PTE of the delta, theta, alpha, and beta bands can be used as biological markers to distinguish between pDOC and healthy people, especially when behavior evaluation is difficult or ambiguous; it can supplement clinical diagnosis.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图的长时间意识障碍脑连通性分析。
背景:延长性意识障碍(pDOC)在神经病学中很常见,给家庭和社会带来了沉重的负担。本研究旨在探讨基于定量脑电图(qEEG)的pDOC患者脑连通性特征,为pDOC的评价拓展新的方向。方法:根据有无pDOC分为对照组(CG)和DOC组。参与者接受磁共振成像(MRI) T1三维磁化,并采用准备好的快速采集梯度回波(3D-T1-MPRAGE)序列,并收集视频脑电数据。通过脑电数据分析工具计算功率谱、DTABR ((δ + θ)/(α + β)比、Pearson相关系数(Pearson r)、Granger因果关系、相转移熵(PTE),对两组进行统计学分析。最后,绘制连通性指标的受试者工作特征(ROC)曲线。结果:DOC组在额、中央、顶叶和颞叶区域的权力比例低于CG组。DOC组的δ功率百分比显著高于CG组,DOC组的DTABR高于CG组,且数值呈倒转。DOC组的Pearson r高于CG组。δ波段(Z = -6.71, P < 0.01)、θ波段(Z = -15.06, P < 0.01)、α波段(Z = -28.45, P < 0.01)的Pearson r均有统计学意义。格兰杰因果关系显示,在相同阈值下,DOC组两半球间定向连接强度显著降低(Z = -82.43, P < 0.01)。DOC组各频段PTE均低于CG组。δ波段(Z = -42.68, P < 0.01)、θ波段(Z = -56.79, P < 0.01)、α波段(Z = -35.11, P < 0.01)、β波段(Z = -63.74, P < 0.01)的PTE差异均有统计学意义。结论:基于脑电图的脑连通性分析具有无创、方便、床边等优点。DTABR、delta、theta和alpha波段的Pearson r、Granger因果关系和delta、theta、alpha和beta波段的PTE可以作为区分pDOC和健康人的生物标记,特别是在行为评价困难或模糊的情况下;它可以补充临床诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Plasticity
Neural Plasticity NEUROSCIENCES-
CiteScore
6.80
自引率
0.00%
发文量
77
审稿时长
16 weeks
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
期刊最新文献
A Novel Rat Infant Model of Medial Temporal Lobe Epilepsy Reveals New Insight into the Molecular Biology and Epileptogenesis in the Developing Brain. Retracted: Sports Augmented Cognitive Benefits: An fMRI Study of Executive Function with Go/NoGo Task Vasoprotective Effects of Hyperoside against Cerebral Ischemia/Reperfusion Injury in Rats: Activation of Large-Conductance Ca2+-Activated K+ Channels. Acupuncture Alleviates CUMS-Induced Depression-Like Behaviors by Restoring Prefrontal Cortex Neuroplasticity. Functional Connectivity Changes in the Insular Subregions of Patients with Obstructive Sleep Apnea after 6 Months of Continuous Positive Airway Pressure Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1