Biomechanical Analysis of Lumbar Interbody Fusion Cages With Various Elastic Moduli in Osteoporotic and Non-osteoporotic Lumbar Spine: A Finite Element Analysis.

IF 3 3区 医学 Q2 CLINICAL NEUROLOGY Global Spine Journal Pub Date : 2024-09-01 Epub Date: 2023-05-03 DOI:10.1177/21925682231166612
Da Zou, Lihao Yue, Zheyu Fan, Yi Zhao, Huijie Leng, Zhuoran Sun, Weishi Li
{"title":"Biomechanical Analysis of Lumbar Interbody Fusion Cages With Various Elastic Moduli in Osteoporotic and Non-osteoporotic Lumbar Spine: A Finite Element Analysis.","authors":"Da Zou, Lihao Yue, Zheyu Fan, Yi Zhao, Huijie Leng, Zhuoran Sun, Weishi Li","doi":"10.1177/21925682231166612","DOIUrl":null,"url":null,"abstract":"<p><strong>Study design: </strong>Finite element analysis (FEA).</p><p><strong>Objective: </strong>This study aimed to explore the effects of cage elastic modulus (Cage-E) on the endplate stress in different bone conditions: osteoporosis (OP) and non-osteoporosis (non-OP). We also explored the correlation between endplate thickness and endplate stress.</p><p><strong>Methods: </strong>The FEA models of L4-L5 with lumbar interbody fusion were designed to access the effects of Cage-E on the endplate stress in different bone conditions. Two groups of the Young's moduli of bony structure were assigned to simulate the conditions of OP and non-OP, and the bony endplates were analyzed in 2 kinds of thicknesses: .5 mm and 1.0 mm, with the insertion of cages with different Young's moduli including .5, 1.5, 3, 5, 10, and 20 GPa. After model validation, an axial compressive load of 400 N and a flexion/extension moment of 7.5Nm was performed on the superior surface of L4 vertebral body in order to analyze the distribution of stress.</p><p><strong>Results: </strong>The maximum Von Mises stress in the endplates increased by up to 100% in the OP model compared with non-OP model under the same condition of cage-E and endplate thickness. In both OP and non-OP models, the maximum endplate stress decreased as the cage-E decreased, but the maximum stress in the lumbar posterior fixation increased as the cage-E decreased. Thinner endplate thickness was associated with increased endplate stress.</p><p><strong>Conclusion: </strong>The endplate stress is higher in osteoporotic bone than non-osteoporotic bone, which explains part of the mechanism of OP-related cage subsidence. It is reasonable to reduce the endplate stress by reducing the cage-E, but we should balance the risk of fixation failure. Endplate thickness is also important when evaluating the cage subsidence risk.</p>","PeriodicalId":12680,"journal":{"name":"Global Spine Journal","volume":" ","pages":"2053-2061"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21925682231166612","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Study design: Finite element analysis (FEA).

Objective: This study aimed to explore the effects of cage elastic modulus (Cage-E) on the endplate stress in different bone conditions: osteoporosis (OP) and non-osteoporosis (non-OP). We also explored the correlation between endplate thickness and endplate stress.

Methods: The FEA models of L4-L5 with lumbar interbody fusion were designed to access the effects of Cage-E on the endplate stress in different bone conditions. Two groups of the Young's moduli of bony structure were assigned to simulate the conditions of OP and non-OP, and the bony endplates were analyzed in 2 kinds of thicknesses: .5 mm and 1.0 mm, with the insertion of cages with different Young's moduli including .5, 1.5, 3, 5, 10, and 20 GPa. After model validation, an axial compressive load of 400 N and a flexion/extension moment of 7.5Nm was performed on the superior surface of L4 vertebral body in order to analyze the distribution of stress.

Results: The maximum Von Mises stress in the endplates increased by up to 100% in the OP model compared with non-OP model under the same condition of cage-E and endplate thickness. In both OP and non-OP models, the maximum endplate stress decreased as the cage-E decreased, but the maximum stress in the lumbar posterior fixation increased as the cage-E decreased. Thinner endplate thickness was associated with increased endplate stress.

Conclusion: The endplate stress is higher in osteoporotic bone than non-osteoporotic bone, which explains part of the mechanism of OP-related cage subsidence. It is reasonable to reduce the endplate stress by reducing the cage-E, but we should balance the risk of fixation failure. Endplate thickness is also important when evaluating the cage subsidence risk.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在骨质疏松和非骨质疏松腰椎中使用不同弹性模量的腰椎椎间融合套管的生物力学分析:有限元分析。
研究设计有限元分析(FEA):本研究旨在探讨在骨质疏松症(OP)和非骨质疏松症(non-OP)等不同骨质情况下,骨笼弹性模量(Cage-E)对终板应力的影响。我们还探讨了终板厚度与终板应力之间的相关性:设计了腰椎椎间融合术 L4-L5 的有限元分析模型,以了解 Cage-E 在不同骨质条件下对终板应力的影响。将骨质结构的 Young's moduli 分为两组,分别模拟 OP 和非 OP 的情况,并对 0.5 mm 和 1.0 mm 两种厚度的骨质终板进行分析,同时插入不同 Young's moduli 的 cage,包括 0.5、1.5、3、5、10 和 20 GPa。模型验证后,在 L4 椎体上表面施加 400 N 的轴向压缩载荷和 7.5 Nm 的屈伸力矩,以分析应力分布:结果:在相同的Cage-E和终板厚度条件下,OP模型中终板的最大Von Mises应力比非OP模型增加了100%。在OP和非OP模型中,随着cage-E的减小,终板的最大应力减小,但腰椎后固定的最大应力随着cage-E的减小而增大。终板厚度越薄,终板应力越大:结论:骨质疏松症骨的终板应力高于非骨质疏松症骨,这解释了与OP相关的固定架下沉的部分机制。通过减少Cage-E来降低终板应力是合理的,但我们应平衡固定失败的风险。在评估保持架下沉风险时,终板厚度也很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Spine Journal
Global Spine Journal Medicine-Surgery
CiteScore
6.20
自引率
8.30%
发文量
278
审稿时长
8 weeks
期刊介绍: Global Spine Journal (GSJ) is the official scientific publication of AOSpine. A peer-reviewed, open access journal, devoted to the study and treatment of spinal disorders, including diagnosis, operative and non-operative treatment options, surgical techniques, and emerging research and clinical developments.GSJ is indexed in PubMedCentral, SCOPUS, and Emerging Sources Citation Index (ESCI).
期刊最新文献
Role of Prophylactic Negative Pressure Wound Therapy in Reducing Surgical-Site Infections in Spine Surgery - A Systematic Review and Meta-Analysis. Clinical Outcomes and Cost-Effectiveness of Demineralized Bone Matrix-Augmented Vertebroplasty for Osteoporotic Vertebral Compression Fractures. Matched Analysis of the Risk Assessment and Prediction Tool for Post-Operative Disposition Needs in a Spinal Oncology Population. Machine Learning Algorithm to Predict Change in the Decision-Making for Thoracolumbar Fractures Without Neurological Deficit After MRI: A Multicenter Study. Three-Level Cervical Disc Arthroplasty Combined With Fusion Versus Three-Level ACDF: A Systematic Review and Meta-Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1