Christos Goudis, Stylianos Daios, Fotios Dimitriadis, Tong Liu
{"title":"CHARGE-AF: A Useful Score For Atrial Fibrillation Prediction?","authors":"Christos Goudis, Stylianos Daios, Fotios Dimitriadis, Tong Liu","doi":"10.2174/1573403X18666220901102557","DOIUrl":null,"url":null,"abstract":"<p><p>Atrial fibrillation (AF) is the commonest arrhythmia in clinical practice and is associated with increased morbidity and mortality. Various predictive scores for new-onset AF have been proposed, but so far, none have been widely used in clinical practice. CHARGE-AF score was developed from a pooled diverse population from three large cohorts (Atherosclerosis Risk in Communities study, Cardiovascular Health Study and Framingham Heart Study). A simple 5-year predictive model includes the variables of age, race, height, weight, systolic and diastolic blood pressure, current smoking, use of antihypertensive medication, diabetes mellitus, history of myocardial infarction and heart failure. Recent studies report that the CHARGE-AF score has good discrimination for incident AF and seems to be a promising prediction model for this arrhythmia. New screening tools (smartphone apps, smartwatches) are rapidly developing for AF detection. Therefore, the wide application of the CHARGE-AF score in clinical practice and the upcoming usage of mobile health technologies and smartwatches may result in better AF prediction and adequate stroke prevention, especially in high-risk patients.</p>","PeriodicalId":10832,"journal":{"name":"Current Cardiology Reviews","volume":"19 2","pages":"e010922208402"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Cardiology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1573403X18666220901102557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Atrial fibrillation (AF) is the commonest arrhythmia in clinical practice and is associated with increased morbidity and mortality. Various predictive scores for new-onset AF have been proposed, but so far, none have been widely used in clinical practice. CHARGE-AF score was developed from a pooled diverse population from three large cohorts (Atherosclerosis Risk in Communities study, Cardiovascular Health Study and Framingham Heart Study). A simple 5-year predictive model includes the variables of age, race, height, weight, systolic and diastolic blood pressure, current smoking, use of antihypertensive medication, diabetes mellitus, history of myocardial infarction and heart failure. Recent studies report that the CHARGE-AF score has good discrimination for incident AF and seems to be a promising prediction model for this arrhythmia. New screening tools (smartphone apps, smartwatches) are rapidly developing for AF detection. Therefore, the wide application of the CHARGE-AF score in clinical practice and the upcoming usage of mobile health technologies and smartwatches may result in better AF prediction and adequate stroke prevention, especially in high-risk patients.
期刊介绍:
Current Cardiology Reviews publishes frontier reviews of high quality on all the latest advances on the practical and clinical approach to the diagnosis and treatment of cardiovascular disease. All relevant areas are covered by the journal including arrhythmia, congestive heart failure, cardiomyopathy, congenital heart disease, drugs, methodology, pacing, and preventive cardiology. The journal is essential reading for all researchers and clinicians in cardiology.