Insights into isoform-specific mineralocorticoid receptor action in the hippocampus.

IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Endocrinology Pub Date : 2023-07-12 Print Date: 2023-08-01 DOI:10.1530/JOE-22-0293
Carolina Gaudenzi, Karen R Mifsud, Johannes M H M Reul
{"title":"Insights into isoform-specific mineralocorticoid receptor action in the hippocampus.","authors":"Carolina Gaudenzi, Karen R Mifsud, Johannes M H M Reul","doi":"10.1530/JOE-22-0293","DOIUrl":null,"url":null,"abstract":"<p><p>The mineralocorticoid receptor (MR) plays a critical role in the mammalian brain as a mediator of appropriate cellular and behavioural responses under both baseline and stressful conditions. In the hippocampus, the MR has been implicated in several processes, such as neuronal maintenance, adult neurogenesis, inhibitory control of the hypothalamic-pituitary-adrenal axis, and learning and memory. Because of its high affinity for endogenous glucocorticoid hormones, the MR has long been postulated to mediate tonic actions in the brain, but more recent data have expanded on this view, indicating that the MR elicits dynamic responses as well. The complexity of the diverse molecular, cellular, and physiological functions fulfilled by the human, rat and mouse MR could at least partially be explained by the existence of different isoforms of the receptor. The structural and functional characteristics of these isoforms, however, have remained largely unexplored. The present article will review the current knowledge concerning human, rat, and mouse MR isoforms and evaluate seminal studies concerning the roles of the brain MR, with the intent to shed light on the function of its specific isoforms.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":"258 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-22-0293","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The mineralocorticoid receptor (MR) plays a critical role in the mammalian brain as a mediator of appropriate cellular and behavioural responses under both baseline and stressful conditions. In the hippocampus, the MR has been implicated in several processes, such as neuronal maintenance, adult neurogenesis, inhibitory control of the hypothalamic-pituitary-adrenal axis, and learning and memory. Because of its high affinity for endogenous glucocorticoid hormones, the MR has long been postulated to mediate tonic actions in the brain, but more recent data have expanded on this view, indicating that the MR elicits dynamic responses as well. The complexity of the diverse molecular, cellular, and physiological functions fulfilled by the human, rat and mouse MR could at least partially be explained by the existence of different isoforms of the receptor. The structural and functional characteristics of these isoforms, however, have remained largely unexplored. The present article will review the current knowledge concerning human, rat, and mouse MR isoforms and evaluate seminal studies concerning the roles of the brain MR, with the intent to shed light on the function of its specific isoforms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
洞察海马中矿质皮质激素受体的特异性作用
矿质皮质激素受体(MR)在哺乳动物大脑中扮演着至关重要的角色,是基线和压力条件下适当的细胞和行为反应的介质。在海马中,MR 与多个过程有关,如神经元维持、成神经发生、下丘脑-垂体-肾上腺轴的抑制控制以及学习和记忆。由于 MR 与内源性糖皮质激素具有高亲和力,因此长期以来一直被推测为介导大脑中的强直性作用,但最近的数据进一步证实了这一观点,表明 MR 还能引起动态反应。人类、大鼠和小鼠的 MR 在分子、细胞和生理功能上的复杂性至少可以部分地解释为受体存在不同的异构体。然而,这些异构体的结构和功能特征在很大程度上仍未得到探索。本文将回顾有关人类、大鼠和小鼠 MR 同工型的现有知识,并评估有关大脑 MR 作用的开创性研究,以期阐明其特定同工型的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Endocrinology
Journal of Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.50%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.
期刊最新文献
The interplay between ECTO and ENDO exposomes on metabolic diseases throughout lifespan: exposome loop as a new concept. The role of glucagon-like peptides in osteosarcopenia. GLP-1R/NPY2R regulate gene expression, ovarian and adrenal morphology in HFD mice. Cardiovascular effects of tirzepatide. Thirty years of StAR gazing: expanding the universe of the steroidogenic acute regulatory protein.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1