{"title":"Trend in biodegradable porous nanomaterials for anticancer drug delivery.","authors":"Bao Quang Gia Le, Tan Le Hoang Doan","doi":"10.1002/wnan.1874","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, biodegradable nanomaterials have exhibited remarkable promise for drug administration to tumors due to their high drug-loading capacity, biocompatibility, biodegradability, and clearance. This review will discuss and summarize the trends in utilizing biodegradable nanomaterials for anticancer drug delivery, including biodegradable periodic mesoporous organosilicas (BPMOs) and metal-organic frameworks (MOFs). The distinct structure and features of BPMOs and MOFs will be initially evaluated, as well as their use as delivery vehicles for anticancer drug delivery applications. Then, the themes for the development of each material will be utilized to illustrate their drug delivery performance. Finally, the current obstacles and potential for future development as efficient drug delivery systems will be thoroughly reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 4","pages":"e1874"},"PeriodicalIF":6.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1874","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 5
Abstract
In recent years, biodegradable nanomaterials have exhibited remarkable promise for drug administration to tumors due to their high drug-loading capacity, biocompatibility, biodegradability, and clearance. This review will discuss and summarize the trends in utilizing biodegradable nanomaterials for anticancer drug delivery, including biodegradable periodic mesoporous organosilicas (BPMOs) and metal-organic frameworks (MOFs). The distinct structure and features of BPMOs and MOFs will be initially evaluated, as well as their use as delivery vehicles for anticancer drug delivery applications. Then, the themes for the development of each material will be utilized to illustrate their drug delivery performance. Finally, the current obstacles and potential for future development as efficient drug delivery systems will be thoroughly reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
期刊介绍:
Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists.
Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.