Hanieh Ghasemian Nafchi, Yaser Azizi, Fatemehsadat Amjadi, Iman Halvaei
{"title":"<i>In vitro</i> effects of plasma rich in growth factors on human teratozoospermic semen samples.","authors":"Hanieh Ghasemian Nafchi, Yaser Azizi, Fatemehsadat Amjadi, Iman Halvaei","doi":"10.1080/19396368.2023.2180455","DOIUrl":null,"url":null,"abstract":"<p><p>There is a correlation between teratozoospermia and production of reactive oxygen species leading to poor assisted reproductive techniques outcomes. This study aimed to examine the effect of plasma-rich in growth factors (PRGF) on teratozoospermic samples. Twenty-five teratozoospermic samples were included in this study. After sperm preparation, it was divided into four groups, including 0 (control), 1, 5, and 10% PRGF. Sperm motility, viability (eosin-nigrosin staining), morphology (Papanicolaou staining), DNA fragmentation (sperm chromatin dispersion test), mitochondrial membrane potential (JC-1 staining by flow cytometry), and lipid peroxidation (measurement of malondialdehyde, MDA) were evaluated before and after 1 h of incubation with or without PRGF. Our results showed that after 1 h of incubation, the addition of 1% PRGF improved sperm progressive motility (47.72 ± 13.76%) compared to the control group (17.36 ± 8.50%) (<i>p</i> < 0.001). Also, 1% PRGF preserved the sperm's total motility (77.50 ± 13.28% vs. 65.63 ± 19.03%, for 1% PRGF and control, respectively) and viability after incubation. The rate of normal sperm morphology was the same between different groups. Higher mitochondrial membrane potential and lower DNA fragmentation were also observed in sperm treated with different concentrations of PRGF compared to the control group, but the differences were non-significant. The MDA levels were significantly decreased in PRGF-treated groups compared to the control group (0.99 ± 0.62, 0.95 ± 0.33, 0.95 ± 0.79, and 1.49 ± 0.27 for 1% PRGF, 5% PRGF, 10% PRGF and control, respectively). Based on our results, it seems that PRGF incubation can improve sperm parameters and especially decrease the level of malondialdehyde as an indicator of oxidative stress, which is one of the main problems of teratozoospermic samples.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":"69 4","pages":"255-263"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2023.2180455","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a correlation between teratozoospermia and production of reactive oxygen species leading to poor assisted reproductive techniques outcomes. This study aimed to examine the effect of plasma-rich in growth factors (PRGF) on teratozoospermic samples. Twenty-five teratozoospermic samples were included in this study. After sperm preparation, it was divided into four groups, including 0 (control), 1, 5, and 10% PRGF. Sperm motility, viability (eosin-nigrosin staining), morphology (Papanicolaou staining), DNA fragmentation (sperm chromatin dispersion test), mitochondrial membrane potential (JC-1 staining by flow cytometry), and lipid peroxidation (measurement of malondialdehyde, MDA) were evaluated before and after 1 h of incubation with or without PRGF. Our results showed that after 1 h of incubation, the addition of 1% PRGF improved sperm progressive motility (47.72 ± 13.76%) compared to the control group (17.36 ± 8.50%) (p < 0.001). Also, 1% PRGF preserved the sperm's total motility (77.50 ± 13.28% vs. 65.63 ± 19.03%, for 1% PRGF and control, respectively) and viability after incubation. The rate of normal sperm morphology was the same between different groups. Higher mitochondrial membrane potential and lower DNA fragmentation were also observed in sperm treated with different concentrations of PRGF compared to the control group, but the differences were non-significant. The MDA levels were significantly decreased in PRGF-treated groups compared to the control group (0.99 ± 0.62, 0.95 ± 0.33, 0.95 ± 0.79, and 1.49 ± 0.27 for 1% PRGF, 5% PRGF, 10% PRGF and control, respectively). Based on our results, it seems that PRGF incubation can improve sperm parameters and especially decrease the level of malondialdehyde as an indicator of oxidative stress, which is one of the main problems of teratozoospermic samples.
期刊介绍:
Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.