Yu-Ting Bai, Wei Jia, Xue-Bo Jin, Ting-Li Su, Jian-Lei Kong
{"title":"Location estimation based on feature mode matching with deep network models.","authors":"Yu-Ting Bai, Wei Jia, Xue-Bo Jin, Ting-Li Su, Jian-Lei Kong","doi":"10.3389/fnbot.2023.1181864","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Global navigation satellite system (GNSS) signals can be lost in viaducts, urban canyons, and tunnel environments. It has been a significant challenge to achieve the accurate location of pedestrians during Global Positioning System (GPS) signal outages. This paper proposes a location estimation only with inertial measurements.</p><p><strong>Methods: </strong>A method is designed based on deep network models with feature mode matching. First, a framework is designed to extract the features of inertial measurements and match them with deep networks. Second, feature extraction and classification methods are investigated to achieve mode partitioning and to lay the foundation for checking different deep networks. Third, typical deep network models are analyzed to match various features. The selected models can be trained for different modes of inertial measurements to obtain localization information. The experiments are performed with the inertial mileage dataset from Oxford University.</p><p><strong>Results and discussion: </strong>The results demonstrate that the appropriate networks based on different feature modes have more accurate position estimation, which can improve the localization accuracy of pedestrians in GPS signal outages.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"17 ","pages":"1181864"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2023.1181864","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Global navigation satellite system (GNSS) signals can be lost in viaducts, urban canyons, and tunnel environments. It has been a significant challenge to achieve the accurate location of pedestrians during Global Positioning System (GPS) signal outages. This paper proposes a location estimation only with inertial measurements.
Methods: A method is designed based on deep network models with feature mode matching. First, a framework is designed to extract the features of inertial measurements and match them with deep networks. Second, feature extraction and classification methods are investigated to achieve mode partitioning and to lay the foundation for checking different deep networks. Third, typical deep network models are analyzed to match various features. The selected models can be trained for different modes of inertial measurements to obtain localization information. The experiments are performed with the inertial mileage dataset from Oxford University.
Results and discussion: The results demonstrate that the appropriate networks based on different feature modes have more accurate position estimation, which can improve the localization accuracy of pedestrians in GPS signal outages.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.