Therapeutic disruption of RAD52-ssDNA complexation via novel drug-like inhibitors.

NAR Cancer Pub Date : 2023-05-01 eCollection Date: 2023-06-01 DOI:10.1093/narcan/zcad018
Divya S Bhat, Eva Malacaria, Ludovica Di Biagi, Mortezaali Razzaghi, Masayoshi Honda, Kathryn F Hobbs, Sarah R Hengel, Pietro Pichierri, M Ashley Spies, Maria Spies
{"title":"Therapeutic disruption of RAD52-ssDNA complexation via novel drug-like inhibitors.","authors":"Divya S Bhat, Eva Malacaria, Ludovica Di Biagi, Mortezaali Razzaghi, Masayoshi Honda, Kathryn F Hobbs, Sarah R Hengel, Pietro Pichierri, M Ashley Spies, Maria Spies","doi":"10.1093/narcan/zcad018","DOIUrl":null,"url":null,"abstract":"<p><p>RAD52 protein is a coveted target for anticancer drug discovery. Similar to poly-ADP-ribose polymerase (PARP) inhibitors, pharmacological inhibition of RAD52 is synthetically lethal with defects in genome caretakers BRCA1 and BRCA2 (∼25% of breast and ovarian cancers). Emerging structure activity relationships for RAD52 are complex, making it challenging to transform previously identified disruptors of the RAD52-ssDNA interaction into drug-like leads using traditional medicinal chemistry approaches. Using pharmacophoric informatics on the RAD52 complexation by epigallocatechin (EGC), and the Enamine <i>in silico</i> REAL database, we identified six distinct chemical scaffolds that occupy the same physical space on RAD52 as EGC. All six were RAD52 inhibitors (IC<sub>50</sub> ∼23-1200 μM) with two of the compounds (Z56 and Z99) selectively killing BRCA-mutant cells and inhibiting cellular activities of RAD52 at micromolar inhibitor concentrations. While Z56 had no effect on the ssDNA-binding protein RPA and was toxic to BRCA-mutant cells only, Z99 inhibited both proteins and displayed toxicity towards BRCA-complemented cells. Optimization of the Z99 scaffold resulted in a set of more powerful and selective inhibitors (IC<sub>50</sub> ∼1.3-8 μM), which were only toxic to BRCA-mutant cells. RAD52 complexation by Z56, Z99 and its more specific derivatives provide a roadmap for next generation of cancer therapeutics.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1c/4d/zcad018.PMC10150327.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcad018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

RAD52 protein is a coveted target for anticancer drug discovery. Similar to poly-ADP-ribose polymerase (PARP) inhibitors, pharmacological inhibition of RAD52 is synthetically lethal with defects in genome caretakers BRCA1 and BRCA2 (∼25% of breast and ovarian cancers). Emerging structure activity relationships for RAD52 are complex, making it challenging to transform previously identified disruptors of the RAD52-ssDNA interaction into drug-like leads using traditional medicinal chemistry approaches. Using pharmacophoric informatics on the RAD52 complexation by epigallocatechin (EGC), and the Enamine in silico REAL database, we identified six distinct chemical scaffolds that occupy the same physical space on RAD52 as EGC. All six were RAD52 inhibitors (IC50 ∼23-1200 μM) with two of the compounds (Z56 and Z99) selectively killing BRCA-mutant cells and inhibiting cellular activities of RAD52 at micromolar inhibitor concentrations. While Z56 had no effect on the ssDNA-binding protein RPA and was toxic to BRCA-mutant cells only, Z99 inhibited both proteins and displayed toxicity towards BRCA-complemented cells. Optimization of the Z99 scaffold resulted in a set of more powerful and selective inhibitors (IC50 ∼1.3-8 μM), which were only toxic to BRCA-mutant cells. RAD52 complexation by Z56, Z99 and its more specific derivatives provide a roadmap for next generation of cancer therapeutics.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过新型药物抑制剂对 RAD52-ssDNA 复合物进行治疗性破坏。
RAD52 蛋白是人们梦寐以求的抗癌药物靶点。与多聚 ADP 核糖聚合酶(PARP)抑制剂类似,RAD52 的药理抑制也会导致基因组看护者 BRCA1 和 BRCA2 的缺陷(占乳腺癌和卵巢癌的 25%)。新发现的 RAD52 结构活性关系非常复杂,因此使用传统的药物化学方法将以前发现的 RAD52 与 ssDNA 相互作用的干扰物转化为类似药物的先导物具有挑战性。利用表没食子儿茶素(EGC)与 RAD52 复合物的药理学信息学以及 Enamine in silico REAL 数据库,我们发现了与 EGC 在 RAD52 上占据相同物理空间的六种不同的化学支架。这六种化合物都是 RAD52 抑制剂(IC50 ∼23-1200 μM),其中两种化合物(Z56 和 Z99)能选择性地杀死 BRCA 突变细胞,并在微摩尔抑制剂浓度下抑制 RAD52 的细胞活性。Z56对ssDNA结合蛋白RPA没有影响,仅对BRCA突变细胞有毒性,而Z99对两种蛋白都有抑制作用,并对BRCA补体细胞有毒性。对 Z99 支架的优化产生了一组更强、更有选择性的抑制剂(IC50 ∼1.3-8 μM),它们只对 BRCA 突变细胞有毒性。Z56、Z99 及其更具特异性的衍生物对 RAD52 的复合物作用为下一代癌症疗法提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pan-cancer analysis of promoter activity quantitative trait loci Large-scale phenogenomic analysis of human cancers uncovers frequent alterations affecting SMC5/6 complex components in breast cancer. Inhibition of nonsense-mediated mRNA decay reduces the tumorigenicity of human fibrosarcoma cells. CDK2 regulates collapsed replication fork repair in CCNE1-amplified ovarian cancer cells via homologous recombination. Editorial: DNA repair and nucleic acid therapeutics in cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1