{"title":"Artificial intelligence-aided optical imaging for cancer theranostics","authors":"Mengze Xu , Zhiyi Chen , Junxiao Zheng , Qi Zhao , Zhen Yuan","doi":"10.1016/j.semcancer.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>The use of artificial intelligence (AI) to assist biomedical imaging have demonstrated its high accuracy and high efficiency in medical decision-making for individualized cancer medicine. In particular, optical imaging<span> methods are able to visualize both the structural and functional information of tumors tissues with high contrast, low cost, and noninvasive property. However, no systematic work has been performed to inspect the recent advances on AI-aided optical imaging for cancer theranostics. In this review, we demonstrated how AI can guide optical imaging methods to improve the accuracy on tumor detection, automated analysis and prediction of its histopathological section, its monitoring during treatment, and its prognosis by using computer vision, deep learning and natural language processing. By contrast, the </span></span>optical imaging techniques<span> involved mainly consisted of various tomography and microscopy imaging methods such as optical endoscopy imaging, optical coherence tomography, photoacoustic imaging, diffuse optical tomography, optical microscopy imaging, Raman imaging, and fluorescent imaging. Meanwhile, existing problems, possible challenges and future prospects for AI-aided optical imaging protocol for cancer theranostics were also discussed. It is expected that the present work can open a new avenue for precision oncology by using AI and optical imaging tools.</span></p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"94 ","pages":"Pages 62-80"},"PeriodicalIF":12.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044579X23000949","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The use of artificial intelligence (AI) to assist biomedical imaging have demonstrated its high accuracy and high efficiency in medical decision-making for individualized cancer medicine. In particular, optical imaging methods are able to visualize both the structural and functional information of tumors tissues with high contrast, low cost, and noninvasive property. However, no systematic work has been performed to inspect the recent advances on AI-aided optical imaging for cancer theranostics. In this review, we demonstrated how AI can guide optical imaging methods to improve the accuracy on tumor detection, automated analysis and prediction of its histopathological section, its monitoring during treatment, and its prognosis by using computer vision, deep learning and natural language processing. By contrast, the optical imaging techniques involved mainly consisted of various tomography and microscopy imaging methods such as optical endoscopy imaging, optical coherence tomography, photoacoustic imaging, diffuse optical tomography, optical microscopy imaging, Raman imaging, and fluorescent imaging. Meanwhile, existing problems, possible challenges and future prospects for AI-aided optical imaging protocol for cancer theranostics were also discussed. It is expected that the present work can open a new avenue for precision oncology by using AI and optical imaging tools.
期刊介绍:
Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field.
The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies.
To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area.
The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.