FAIR-Checker: supporting digital resource findability and reuse with Knowledge Graphs and Semantic Web standards.

IF 1.6 3区 工程技术 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Biomedical Semantics Pub Date : 2023-07-01 DOI:10.1186/s13326-023-00289-5
Alban Gaignard, Thomas Rosnet, Frédéric De Lamotte, Vincent Lefort, Marie-Dominique Devignes
{"title":"FAIR-Checker: supporting digital resource findability and reuse with Knowledge Graphs and Semantic Web standards.","authors":"Alban Gaignard,&nbsp;Thomas Rosnet,&nbsp;Frédéric De Lamotte,&nbsp;Vincent Lefort,&nbsp;Marie-Dominique Devignes","doi":"10.1186/s13326-023-00289-5","DOIUrl":null,"url":null,"abstract":"<p><p>The current rise of Open Science and Reproducibility in the Life Sciences requires the creation of rich, machine-actionable metadata in order to better share and reuse biological digital resources such as datasets, bioinformatics tools, training materials, etc. For this purpose, FAIR principles have been defined for both data and metadata and adopted by large communities, leading to the definition of specific metrics. However, automatic FAIRness assessment is still difficult because computational evaluations frequently require technical expertise and can be time-consuming. As a first step to address these issues, we propose FAIR-Checker, a web-based tool to assess the FAIRness of metadata presented by digital resources. FAIR-Checker offers two main facets: a \"Check\" module providing a thorough metadata evaluation and recommendations, and an \"Inspect\" module which assists users in improving metadata quality and therefore the FAIRness of their resource. FAIR-Checker leverages Semantic Web standards and technologies such as SPARQL queries and SHACL constraints to automatically assess FAIR metrics. Users are notified of missing, necessary, or recommended metadata for various resource categories. We evaluate FAIR-Checker in the context of improving the FAIRification of individual resources, through better metadata, as well as analyzing the FAIRness of more than 25 thousand bioinformatics software descriptions.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"14 1","pages":"7"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315041/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-023-00289-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The current rise of Open Science and Reproducibility in the Life Sciences requires the creation of rich, machine-actionable metadata in order to better share and reuse biological digital resources such as datasets, bioinformatics tools, training materials, etc. For this purpose, FAIR principles have been defined for both data and metadata and adopted by large communities, leading to the definition of specific metrics. However, automatic FAIRness assessment is still difficult because computational evaluations frequently require technical expertise and can be time-consuming. As a first step to address these issues, we propose FAIR-Checker, a web-based tool to assess the FAIRness of metadata presented by digital resources. FAIR-Checker offers two main facets: a "Check" module providing a thorough metadata evaluation and recommendations, and an "Inspect" module which assists users in improving metadata quality and therefore the FAIRness of their resource. FAIR-Checker leverages Semantic Web standards and technologies such as SPARQL queries and SHACL constraints to automatically assess FAIR metrics. Users are notified of missing, necessary, or recommended metadata for various resource categories. We evaluate FAIR-Checker in the context of improving the FAIRification of individual resources, through better metadata, as well as analyzing the FAIRness of more than 25 thousand bioinformatics software descriptions.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FAIR-Checker:通过知识图和语义网标准支持数字资源的可查找性和重用。
当前开放科学和生命科学可重复性的兴起需要创建丰富的、机器可操作的元数据,以便更好地共享和重用生物数字资源,如数据集、生物信息学工具、培训材料等。为此,已经为数据和元数据定义了FAIR原则,并被大型社区采用,从而定义了特定指标。然而,自动公平性评估仍然很困难,因为计算性评估经常需要技术专长,并且可能很耗时。作为解决这些问题的第一步,我们提出了FAIR-Checker,这是一个基于网络的工具,用于评估数字资源所呈现的元数据的公平性。FAIR-Checker提供两个主要方面:“Check”模块提供全面的元数据评估和建议,“Inspect”模块帮助用户提高元数据质量,从而提高资源的公平性。FAIR- checker利用语义Web标准和技术,如SPARQL查询和acl约束来自动评估FAIR指标。系统会通知用户各种资源类别缺少、必要或推荐的元数据。我们通过更好的元数据,以及分析超过2.5万个生物信息学软件描述的公平性,在提高个体资源公平性的背景下评估了FAIR-Checker。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Semantics
Journal of Biomedical Semantics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.20
自引率
5.30%
发文量
28
审稿时长
30 weeks
期刊介绍: Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas: Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability. Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.
期刊最新文献
Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI). MeSH2Matrix: combining MeSH keywords and machine learning for biomedical relation classification based on PubMed. Annotation of epilepsy clinic letters for natural language processing An extensible and unifying approach to retrospective clinical data modeling: the BrainTeaser Ontology. Concretizing plan specifications as realizables within the OBO foundry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1