MiR-5622-3p inhibits ZCWPW1 to induce apoptosis in silica-exposed mice and spermatocyte cells.

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY Nanotoxicology Pub Date : 2023-06-01 DOI:10.1080/17435390.2023.2223632
Moxuan Zhao, Guiqing Zhou, Jingjing Wang, Yue Zhang, Jinglong Xue, Jianhui Liu, Junhong Xie, Lihua Ren, Xianqing Zhou
{"title":"MiR-5622-3p inhibits ZCWPW1 to induce apoptosis in silica-exposed mice and spermatocyte cells.","authors":"Moxuan Zhao,&nbsp;Guiqing Zhou,&nbsp;Jingjing Wang,&nbsp;Yue Zhang,&nbsp;Jinglong Xue,&nbsp;Jianhui Liu,&nbsp;Junhong Xie,&nbsp;Lihua Ren,&nbsp;Xianqing Zhou","doi":"10.1080/17435390.2023.2223632","DOIUrl":null,"url":null,"abstract":"<p><p>Silica nanoparticles (SiNPs) could cause damage to spermatogenesis, and microRNAs were reported to be associated with male reproduction. This research was designed to explore the toxic impacts of SiNPs induced in male reproduction through miR-5622-3p. In vivo, 60 mice were randomized into the control group and SiNPs group, in which they were exposed to SiNPs for 35 days and then recovered for 15 days. In vitro, 4 groups were set: control group, SiNPs group, SiNPs + miR-5622-3p inhibitor group, and SiNPs + miR-5622-3p inhibitor negative control (NC) group. Our research indicated SiNPs caused the apoptosis of spermatogenic cells, increased level of γ-H2AX, raised the expressions of RAD51, DMC1, 53BP1, and LC8 which were DNA damage repair relative factors, and upregulated Cleaved-Caspase-9 and Cleaved-Caspase-3 levels. Furthermore, SiNPs also elevated the expression of miR-5622-3p but downregulated the level of ZCWPW1. However, miR-5622-3p inhibitor reduced the level of miR-5622-3p, increased the level of ZCWPW1, relieved DNA damage, and depressed the activation of apoptosis pathway, thus, alleviating spermatogenic cells apoptosis caused by SiNPs. The above-mentioned results indicated that SiNPs induced DNA damage resulting in activating of DNA damage response. Meanwhile, SiNPs raised the level of miR-5622-3p targeting inhibited expression of ZCWPW1 to suppress the repair process, possibly making DNA damage so severe that leading to the failure of DNA damage repair, finally inducing the apoptosis of spermatogenic cells.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"17 4","pages":"372-384"},"PeriodicalIF":3.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2023.2223632","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Silica nanoparticles (SiNPs) could cause damage to spermatogenesis, and microRNAs were reported to be associated with male reproduction. This research was designed to explore the toxic impacts of SiNPs induced in male reproduction through miR-5622-3p. In vivo, 60 mice were randomized into the control group and SiNPs group, in which they were exposed to SiNPs for 35 days and then recovered for 15 days. In vitro, 4 groups were set: control group, SiNPs group, SiNPs + miR-5622-3p inhibitor group, and SiNPs + miR-5622-3p inhibitor negative control (NC) group. Our research indicated SiNPs caused the apoptosis of spermatogenic cells, increased level of γ-H2AX, raised the expressions of RAD51, DMC1, 53BP1, and LC8 which were DNA damage repair relative factors, and upregulated Cleaved-Caspase-9 and Cleaved-Caspase-3 levels. Furthermore, SiNPs also elevated the expression of miR-5622-3p but downregulated the level of ZCWPW1. However, miR-5622-3p inhibitor reduced the level of miR-5622-3p, increased the level of ZCWPW1, relieved DNA damage, and depressed the activation of apoptosis pathway, thus, alleviating spermatogenic cells apoptosis caused by SiNPs. The above-mentioned results indicated that SiNPs induced DNA damage resulting in activating of DNA damage response. Meanwhile, SiNPs raised the level of miR-5622-3p targeting inhibited expression of ZCWPW1 to suppress the repair process, possibly making DNA damage so severe that leading to the failure of DNA damage repair, finally inducing the apoptosis of spermatogenic cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MiR-5622-3p抑制ZCWPW1诱导二氧化硅暴露小鼠和精母细胞凋亡。
二氧化硅纳米颗粒(SiNPs)可能对精子发生造成损害,而microrna被报道与男性生殖有关。本研究旨在探讨通过miR-5622-3p诱导的SiNPs对男性生殖的毒性影响。在体内,将60只小鼠随机分为对照组和SiNPs组,分别暴露于SiNPs 35 d,恢复15 d。体外设4组:对照组、SiNPs组、SiNPs + miR-5622-3p抑制剂组、SiNPs + miR-5622-3p抑制剂阴性对照(NC)组。我们的研究表明,SiNPs导致生精细胞凋亡,γ-H2AX水平升高,DNA损伤修复相关因子RAD51、DMC1、53BP1、LC8的表达升高,Cleaved-Caspase-9、Cleaved-Caspase-3水平上调。此外,SiNPs还上调了miR-5622-3p的表达,下调了ZCWPW1的表达水平。而miR-5622-3p抑制剂可降低miR-5622-3p水平,提高ZCWPW1水平,减轻DNA损伤,抑制凋亡通路的激活,从而减轻SiNPs引起的生精细胞凋亡。上述结果表明,SiNPs诱导DNA损伤,激活DNA损伤反应。同时,SiNPs上调miR-5622-3p水平,靶向抑制ZCWPW1的表达,抑制修复过程,可能使DNA损伤严重,导致DNA损伤修复失败,最终诱导生精细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
期刊最新文献
Knock-out mouse models and single particle ICP-MS reveal that SP-D and SP-A deficiency reduces agglomeration of inhaled gold nanoparticles in vivo without significant changes to overall lung clearance. Evaluation of anticancer activity of urotropine surface modified iron oxide nanoparticles using a panel of forty breast cancer cell lines. Plastic nanoparticle toxicity is accentuated in the immune-competent inflamed intestinal tri-culture cell model. Probing the effects of dextran-coated CeO2 nanoparticles on lung fibroblasts using multivariate single-cell Raman spectroscopy. Toxicological impact of silver nanoparticles on soil microbial indicators in contaminated soil (pot experiment).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1