Reconstructing generalized logical networks of transcriptional regulation in mouse brain from temporal gene expression data.

Mingzhou Joe Song, Chris K Lewis, Eric R Lance, Elissa J Chesler, Roumyana Kirova Yordanova, Michael A Langston, Kerrie H Lodowski, Susan E Bergeson
{"title":"Reconstructing generalized logical networks of transcriptional regulation in mouse brain from temporal gene expression data.","authors":"Mingzhou Joe Song,&nbsp;Chris K Lewis,&nbsp;Eric R Lance,&nbsp;Elissa J Chesler,&nbsp;Roumyana Kirova Yordanova,&nbsp;Michael A Langston,&nbsp;Kerrie H Lodowski,&nbsp;Susan E Bergeson","doi":"10.1155/2009/545176","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.</p>","PeriodicalId":72957,"journal":{"name":"EURASIP journal on bioinformatics & systems biology","volume":" ","pages":"545176"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2009/545176","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP journal on bioinformatics & systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2009/545176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从时间基因表达数据重构小鼠大脑转录调控的广义逻辑网络。
基因表达时间过程数据不仅可以用来检测差异表达基因,还可以用来发现基因之间的时间关联。重建广义逻辑网络的问题,以说明基因和环境刺激的转录组数据之间的时间依赖性。开发了一种网络重建算法,该算法使用统计显著性作为网络选择的标准,以避免纯粹偶然产生的假阳性相互作用。基于多项假设检验的网络重构允许对假阳性率进行明确的规范,这与所有现有的网络推理算法不同。仿真研究表明,该方法优于动态贝叶斯网络建模。在酒精分子反应分析中,酒精处理小鼠大脑的时间基因表达数据用于建模。来自主要神经通路的基因被认为是酒精反应机制的推定成分。据文献报道,其中9个基因与酒精有关。其他几个潜在的相关基因,与文献挖掘的独立结果相一致,可能在酒精反应中发挥作用。此外,先前未知的基因相互作用被发现,经过生物学验证,可能为寻找难以捉摸的酒精中毒分子机制提供新的线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data. On biometric systems: electrocardiogram Gaussianity and data synthesis. BCC-NER: bidirectional, contextual clues named entity tagger for gene/protein mention recognition. Review of stochastic hybrid systems with applications in biological systems modeling and analysis. Bayesian inference for biomarker discovery in proteomics: an analytic solution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1