{"title":"Mapping Enzyme Landscapes by Time-Resolved Crystallography with Synchrotron and X-Ray Free Electron Laser Light.","authors":"Mark A Wilson","doi":"10.1146/annurev-biophys-100421-110959","DOIUrl":null,"url":null,"abstract":"<p><p>Directly observing enzyme catalysis in real time at the molecular level has been a long-standing goal of structural enzymology. Time-resolved serial crystallography methods at synchrotron and X-ray free electron laser (XFEL) sources have enabled researchers to follow enzyme catalysis and other nonequilibrium events at ambient conditions with unprecedented time resolution. X-ray crystallography provides detailed information about conformational heterogeneity and protein dynamics, which is enhanced when time-resolved approaches are used. This review outlines the ways in which information about the underlying energy landscape of a protein can be extracted from X-ray crystallographic data, with an emphasis on new developments in XFEL and synchrotron time-resolved crystallography. The emerging view of enzyme catalysis afforded by these techniques can be interpreted as enzymes moving on a time-dependent energy landscape. Some consequences of this view are discussed, including the proposal that irreversible enzymes or enzymes that use covalent catalytic mechanisms may commonly exhibit catalysis-activated motions.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"51 ","pages":"79-98"},"PeriodicalIF":10.4000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132212/pdf/nihms-1804778.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-100421-110959","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 8
Abstract
Directly observing enzyme catalysis in real time at the molecular level has been a long-standing goal of structural enzymology. Time-resolved serial crystallography methods at synchrotron and X-ray free electron laser (XFEL) sources have enabled researchers to follow enzyme catalysis and other nonequilibrium events at ambient conditions with unprecedented time resolution. X-ray crystallography provides detailed information about conformational heterogeneity and protein dynamics, which is enhanced when time-resolved approaches are used. This review outlines the ways in which information about the underlying energy landscape of a protein can be extracted from X-ray crystallographic data, with an emphasis on new developments in XFEL and synchrotron time-resolved crystallography. The emerging view of enzyme catalysis afforded by these techniques can be interpreted as enzymes moving on a time-dependent energy landscape. Some consequences of this view are discussed, including the proposal that irreversible enzymes or enzymes that use covalent catalytic mechanisms may commonly exhibit catalysis-activated motions.
期刊介绍:
The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.