Britta Majchrzak-Stiller, Marie Buchholz, Ilka Peters, Daniel Waschestjuk, Johanna Strotmann, Philipp Höhn, Stephan Hahn, Chris Braumann, Waldemar Uhl, Thomas Müller, Hanns Möhler
{"title":"GP-2250, a novel anticancer agent, inhibits the energy metabolism, activates AMP-Kinase and impairs the NF-kB pathway in pancreatic cancer cells","authors":"Britta Majchrzak-Stiller, Marie Buchholz, Ilka Peters, Daniel Waschestjuk, Johanna Strotmann, Philipp Höhn, Stephan Hahn, Chris Braumann, Waldemar Uhl, Thomas Müller, Hanns Möhler","doi":"10.1111/jcmm.17825","DOIUrl":null,"url":null,"abstract":"<p>GP-2250, a novel anticancer agent, severely limits the energy metabolism, as demonstrated by the inhibition of hexokinase 2 and glyceraldehyde-3-phosphate dehydrogenase and a decrease of ATP. Rescue experiments with supplementary pyruvate or oxaloacetate demonstrated that a TCA cycle deficit largely contributed to cytotoxicity. Activation of the energy-deficit sensor, AMP-dependent protein kinase, was associated with increased phosphorylation of acetyl-CoA carboxylase and Raptor, pointing to a possible deficit in the synthesis of fatty acids and proteins as essential cell components. Binding of p65 to DNA was dose-dependently reduced in nuclear lysates. A transcriptional deficit of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) was substantiated by the downregulation of cyclin D1 and of the anti-apoptotic Bcl2, in line with reduction in tumour cell proliferation and induction of apoptosis, respectively. The upregulation of p53 concomitant with an excess of ROS supported apoptosis. Thus, the anticancer activity of GP-2250 is a result of disruption of energy metabolism and inhibition of tumour promotion by NF-κB.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 14","pages":"2082-2092"},"PeriodicalIF":5.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17825","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular and Molecular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.17825","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
GP-2250, a novel anticancer agent, severely limits the energy metabolism, as demonstrated by the inhibition of hexokinase 2 and glyceraldehyde-3-phosphate dehydrogenase and a decrease of ATP. Rescue experiments with supplementary pyruvate or oxaloacetate demonstrated that a TCA cycle deficit largely contributed to cytotoxicity. Activation of the energy-deficit sensor, AMP-dependent protein kinase, was associated with increased phosphorylation of acetyl-CoA carboxylase and Raptor, pointing to a possible deficit in the synthesis of fatty acids and proteins as essential cell components. Binding of p65 to DNA was dose-dependently reduced in nuclear lysates. A transcriptional deficit of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) was substantiated by the downregulation of cyclin D1 and of the anti-apoptotic Bcl2, in line with reduction in tumour cell proliferation and induction of apoptosis, respectively. The upregulation of p53 concomitant with an excess of ROS supported apoptosis. Thus, the anticancer activity of GP-2250 is a result of disruption of energy metabolism and inhibition of tumour promotion by NF-κB.
期刊介绍:
Bridging physiology and cellular medicine, and molecular biology and molecular therapeutics, Journal of Cellular and Molecular Medicine publishes basic research that furthers our understanding of the cellular and molecular mechanisms of disease and translational studies that convert this knowledge into therapeutic approaches.