Celia Corral-Vazquez, Joan Blanco, Riccardo Aiese Cigliano, Sarrate Zaida, Francesca Vidal, Ester Anton
{"title":"A transcriptomic insight into the human sperm microbiome through next-generation sequencing.","authors":"Celia Corral-Vazquez, Joan Blanco, Riccardo Aiese Cigliano, Sarrate Zaida, Francesca Vidal, Ester Anton","doi":"10.1080/19396368.2023.2183912","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to provide novel information through Next Generation Sequencing (NGS) for the characterization of viral and bacterial RNA cargo of human sperm cells from healthy fertile donors. For this, RNA-seq raw data of poly(A) RNA from 12 sperm samples from fertile donors were aligned to microbiome databases using the GAIA software. Species of viruses and bacteria were quantified in Operational Taxonomic Units (OTU) and filtered by minimal expression level (>1% OTU in at least one sample). Mean expression values (and their standard deviation) of each species were estimated. A Hierarchical Cluster Analysis (HCA) and a Principal Component Analysis (PCA) were performed to detect common microbiome patterns among samples. Sixteen microbiome species, families, domains, and orders surpassed the established expression threshold. Of the 16 categories, nine corresponded to viruses (23.07% OTU) and seven to bacteria (2.77% OTU), among which the <i>Herperviriales</i> order and <i>Escherichia coli</i> were the most abundant, respectively. HCA and PCA displayed four clusters of samples with a differentiated microbiome fingerprint. This work represents a pilot study into the viruses and bacteria that make up the human sperm microbiome. Despite the high variability observed, some patterns of similarity among individuals were identified. Further NGS studies under standardized methodological procedures are necessary to achieve a deep knowledge of the semen microbiome and its implications in male fertility.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":"69 3","pages":"188-195"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2023.2183912","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study is to provide novel information through Next Generation Sequencing (NGS) for the characterization of viral and bacterial RNA cargo of human sperm cells from healthy fertile donors. For this, RNA-seq raw data of poly(A) RNA from 12 sperm samples from fertile donors were aligned to microbiome databases using the GAIA software. Species of viruses and bacteria were quantified in Operational Taxonomic Units (OTU) and filtered by minimal expression level (>1% OTU in at least one sample). Mean expression values (and their standard deviation) of each species were estimated. A Hierarchical Cluster Analysis (HCA) and a Principal Component Analysis (PCA) were performed to detect common microbiome patterns among samples. Sixteen microbiome species, families, domains, and orders surpassed the established expression threshold. Of the 16 categories, nine corresponded to viruses (23.07% OTU) and seven to bacteria (2.77% OTU), among which the Herperviriales order and Escherichia coli were the most abundant, respectively. HCA and PCA displayed four clusters of samples with a differentiated microbiome fingerprint. This work represents a pilot study into the viruses and bacteria that make up the human sperm microbiome. Despite the high variability observed, some patterns of similarity among individuals were identified. Further NGS studies under standardized methodological procedures are necessary to achieve a deep knowledge of the semen microbiome and its implications in male fertility.
期刊介绍:
Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.